【摘 要】
:
随着低合金钢在许多大型工程结构(压力容器、储罐设备、桥梁等)中的广泛应用,对其进行结构完整性分析显得尤为重要。目前,常采用一种基于概率统计和最薄弱环节理论的局部法对材料的断裂行为进行预测和评估。参数的准确性影响着局部法预测的精度。从高拘束试样得到的断裂韧性值通常是一个保守值,容易造成资源的浪费。而实际工程结构中的裂纹往往具有不同的几何尺寸(缺口根部半径不同或裂纹深浅不同),从而改变了裂纹末端所处的
【基金项目】
:
国家自然科学基金《非完全解理断裂模式下焊接组织微观断裂机理研究与失效预测》;
论文部分内容阅读
随着低合金钢在许多大型工程结构(压力容器、储罐设备、桥梁等)中的广泛应用,对其进行结构完整性分析显得尤为重要。目前,常采用一种基于概率统计和最薄弱环节理论的局部法对材料的断裂行为进行预测和评估。参数的准确性影响着局部法预测的精度。从高拘束试样得到的断裂韧性值通常是一个保守值,容易造成资源的浪费。而实际工程结构中的裂纹往往具有不同的几何尺寸(缺口根部半径不同或裂纹深浅不同),从而改变了裂纹末端所处的拘束状态,对断裂韧性值造成一定的影响,从而对局部法参数有一定的影响。所以,关于局部法参数对试样几何尺寸的依赖性的研究就显得尤为必要。本论文以低合金高强钢Q390为研究对象,主要研究内容如下所述:(1)对Q390钢进行Charpy冲击试验。使用Bohzmann函数拟合试验数据,得到冲击吸收功随温度关系曲线。结合Q390钢工作的实际工况温度和局部法模型的适用范围,最终确定本论文的研究温度-60℃。使用SEM对-60℃冲击试样断口观察分析,具有明显的解理特征。该曲线为后续确定主曲线公式的参考温度T0提供数据基础;对室温条件下尺寸为ρ=0.4mm,a/W=0.9的非标准CT试样进行断裂韧性试验,得到相应载荷-位移曲线,三组实验数据分散性较小,可用于后续仿真模型的验证。(2)选择Cohsive模型对不同尺寸CT试样的紧凑拉伸试验进行数值模拟。首先确定Cohesive模型的三个参数;将尺寸为ρ=0.4mm,a/W =0.9的CT试样数值模拟结果与试验进行对比,最大载荷误差为4.32%,说明了 Cohesive模型的可靠性;分析不同拘束条件对紧凑拉伸试验最大载荷和表观断裂韧性的影响。结果发现随着ρ的增大,Pmax也随之增加,呈线性关系;随着a/W的增大,Pmax逐渐降低,最终收敛至一点。随着ρ的减小,KI,app呈下降趋势,下降趋势逐渐减小,最后渐进为一条水平的直线,达到KIc处于平面应变状态。随着韧带长度b的增加(即裂纹变短),KI,app随之增加。(3)选择基于主曲线的局部法参数标定方法;确定Q390主曲线参考温度T0=-41℃并对其进行验证;基于Monte Carlo思想结合主曲线理论利用MATLAB生成大量断裂韧性数据;利用前文的仿真结果建立断裂韧性与威布尔应力之间的函数关系;经过拟合和迭代求解得到不同拘束条件试样标定的局部法参数;分析不同ρ和a/W对局部法模型参数的影响。
其他文献
随着日韩、欧美对节Ni和高Mn低温钢材料的不断开发以及我国对低温储罐用钢的大量需求,研究低成本低温钢,并分析强韧化机理十分必要。本文针对Ni系低温钢成本高及工艺复杂的问题,通过以Mn代Ni的思路,设计出两种中锰低温钢:5Mn、5Mn-1.5Ni钢。并采用QLT工艺进行处理,获得了室温组织为板条马氏体、铁素体及逆相变奥氏体且具有优良强度及低温韧性的薄钢板。分析热处理过程中的组织演变与力学性能规律,确
MCrAlY型涂层(M=Co,Ni)常用于涡轮叶片系统,涂层的寿命对设备的安全运行至关重要。本文利用深度学习方法,将图像处理技术运用于NiCrAlY涂层/Ni基高温合金服役过程中微观形貌的图像特征信息识别、检索及图像特征信息与涂层服役寿命间动态演化规律定量关系模型的搭建。本工作强调将深度学习的方法用在材料领域的前期探索,丰富了 NiCrAlY涂层/Ni基合金数据库,实现了材料图像特征信息的识别和涂
碳化硼陶瓷作为军事防弹、航空航天、耐磨损耐腐蚀零部件等方面都有十分广泛的应用范围,具有密度低、熔点高、硬度高、耐高温、耐腐蚀性能以及良好的中子吸收性能等特点,但烧结过程的困难以及相关室温下力学性能的不足限制碳化硼陶瓷的进一步应用。本文通过常压烧结和热压烧结两种工艺制备碳化硼基陶瓷复合材料,论文详细研究了 B4C/SiC和B4C/TiB2陶瓷复合材料的制备、组织和及力学性能,论文结果对于碳化硼基复合
高硅钢具有高电阻率、低磁晶各向异性和磁致伸缩系数近乎为零等优良特性,成为高频下兼具低铁损、高磁导率、低噪音三大优势的理想铁芯材料。高硅钢因固溶强化和有序相导致其塑性较差,近年来高硅钢的研究主要集中在解决轧制成形问题,且取得一定突破。二次再结晶织构控制是决定取向高硅钢优良软磁性能的关键。现有取向高硅钢二次再结晶研究均采用慢升温退火工艺,存在退火周期长、能耗大、制备成本高等问题。随着绿色环保、节能减排
锌是目前应用广泛的热浸镀材料之一,由于价格便宜且耐蚀性能和力学性能卓越,被广泛用于汽车、家电、集装箱、建筑材料、交通运输、能源等领域。Zn的电极电位比较低,一般通过钝化处理来提高镀锌层的耐蚀性能。随着人们对环境保护的重视越来越强,传统Cr6+由于剧毒和致癌性已被禁用,寻找替代六价铬钝化的环保钝化技术成为大势所趋。然而,溶剂法批量生产的复杂结构件由于镀层表面质量和钢件形状的限制,与市场上现有的三价铬
面对全球日益严峻的能源短缺和环境污染形势,各国研究人员正积极开发与转变可再生能源的高效利用方式。通过半导体光电极的光催化作用,将太阳能转化成储存在反应产物中的化学能是一种新型的太阳能转换方式,尤其是将太阳能储存在高能量密度、高安全性且迅速发展的可充电电池中已经成为未来能源发展的潮流趋势。半导体光电极是光电化学电池的重要组成部分,光电极的微观形貌和结构对光吸收和光生载流子的传输起着至关重要的作用,影
本课题是将钢铁工业成功应用的RH真空净化技术应用到铝合金液净化中并提供理论基础。采用物理模拟和数值模拟的方法详细考察了其应用于铝合金净化的物理场,包括氩气流量、真空度对熔体流动的影响,及对RH真空精炼过程中的夹杂物去除效率的影响。论文主要结果如下:通过相似条件,建立与原型1:1比例的RH真空精炼水模型装置,进行了氩气和水两相流动的水模型实验,模拟了真空精炼装置内部的两相流场,讨论不同工艺参数对液相
中锰钢作为第三代汽车钢的研发热点之一,组织性能的优化一直是其发展的关键问题。目前中锰钢的研发与生产主要基于冷轧生产背景下的两相区退火工艺,退火后的组织为板条铁素体与残余奥氏体,使中锰钢具有优良的强塑积,但屈服强度相对较低。为此,本实验基于热轧工艺提出引入贝氏体部分替代马氏体并调控残余奥氏体的思路,使中锰钢同时获得高屈服强度与良好塑性。因此中锰钢体系下的贝氏体相变动力学调控便成为后续研发与生产的关键
微动损伤普遍存在于机电产品的紧配合部件中,随着高科技领域对高精度、长寿命、高可靠性的要求,微动损伤的危害日益凸显。微动损伤现已成为一些机电设备关键零部件失效的主要原因之一,全球因微动损伤零件造成的废旧机电产品如短线轧机、航空发动机、轮船等经济损失巨大。而激光增材制造技术是实现损伤零件修复的主要技术之一。激光增材制造技术能够通过熔覆、分层-累加的方式对受损零部件进行修复或者再制造为全新零部件,从而大
沙钢5800m3高炉为全国炉容最大的高炉,设计和装备在国内领先。2009年10月21日开炉,各项技术经济指标在全球特大型高炉中属于领先水平。2015年12月以来,高炉炉况开始频繁波动,冷却壁出现漏水,为确保炉况稳定顺行,决定更换铜冷却壁,保证高炉稳定顺行。由于沙钢缺乏特大型高炉的停炉中修资料和独立操作经验,生产组织面临许多困难。针对上述问题,本文参考该高炉首次开炉的情况及国内企业大型高炉的实践经验