D内积空间下AX=B的对称(反对称)解及其最佳逼近

来源 :湖南大学 | 被引量 : 0次 | 上传用户:huachao198977
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
线性矩阵方程的求解问题是数值代数的重要研究领域之一.它在生物学、电学、光子光谱学、振动理论、有限元、结构设计、固体力学、参数识别、自动控制理论、线性最优控制等领域都有重要应用. 本篇论文研究了D内积空间下D对称矩阵和D反对称矩阵的最小二乘解及其最佳逼近问题. 问题i.给定X,B∈RnD×m,求A∈S,使得AX=B. 问题Ii.给定X,B∈RnD×m,求A∈S,使得‖AX-B‖D=min. 问题IIi.给定A~∈RnD×n,求A~∈sA,使得‖A-A‖D=infa∈SA‖A-A~‖D其中S为D对称矩阵集合或D反对称矩阵集合,SA为问题I或问题II的解集合,‖.‖F是Frobenius范数,‖.‖D是D范数. 本篇论文由四章构成: 第一章主要介绍了矩阵特征值反问题、矩阵线性约束问题和相应的最小二乘问题及其最佳逼近问题的背景、意义及进展情况,并简单介绍了本文的主要工作. 第二章研究了D对称矩阵和D反对称矩阵的基本性质. 第三章研究了D对称矩阵关于矩阵方程AX=B的求解问题,给出了相容时方程有解的充要条件和解的表达式,不相容时最小二乘解的一般表达式和最佳逼近解的表达式,同时给出了求最佳逼近解的数值算法和数值例子. 第四章研究了D反对称矩阵关于矩阵方程AX=B的求解问题,给出了相容时方程有解的充要条件和解的表达式,不相容时最小二乘解的一般表达式和最佳逼近解的表达式,同时给出了求最佳逼近解的数值算法和数值例子.
其他文献
当前,世界各国都在积极地进行数学问题的计算机辅助证明的研究,比较著名的数学定理证明验证系统有Mizar、PVS、Coq等,而Mizar语言系统更依靠其庞大的MML数据库及新颖的“人机对
对于牛顿型迭代格式等经典的算法,近年来经过很多学者的研究已经取得了丰硕的理论成果,包括收敛性定理、Kantorovich型定理和误差估计。局部收敛性定理事先假定了方程组有解存
本文考察具有非退化系数的Schr(o)dinger方程|iδu+Q(x,D)u=iδtu-∑qij(x)δiju=0(t,x)∈[0,T]×Rnu(0)=u0,这里qij(x)是常系数的扰动,系数矩阵(qij)是非退化,并且满足Non-t
动力系统通常依赖于系统的现在和过去的状态,因此,在很多情况下中立型随机延迟微分方程(NSDDEs)自然的被用作描述这类系统。分析该类方程的稳定性问题具有重要的意义。本篇论文
作为现代数学的一个重要研究方向,图论在数学和其他领域中正起着越来越重要的作用。图的Laplace算子是这一领域中的一个重要研究方向,自上世纪以来,关于这种算子的研究已取得了