【摘 要】
:
近年来,随着网络生活的丰富,无线通信迎来了发展的黄金时期,特别是5G毫米波通信的提出,为通信的发展指明了方向。然而CMOS工艺因为低成本、高集成度的优点成为了5G毫米波芯片的首选。因此,本文针对毫米波芯片里必不可少的混频器模块,进行深入研究与探索。首先,本文在混频器的研究背景上,根据国内外的研究现状,针对微波电路的走线以及端口网络分析问题,对微波电路的传输线理论和端口网络进行了论述。然后针对混频器
论文部分内容阅读
近年来,随着网络生活的丰富,无线通信迎来了发展的黄金时期,特别是5G毫米波通信的提出,为通信的发展指明了方向。然而CMOS工艺因为低成本、高集成度的优点成为了5G毫米波芯片的首选。因此,本文针对毫米波芯片里必不可少的混频器模块,进行深入研究与探索。首先,本文在混频器的研究背景上,根据国内外的研究现状,针对微波电路的走线以及端口网络分析问题,对微波电路的传输线理论和端口网络进行了论述。然后针对混频器进行了基本理论的分析,包括混频器的工作原理,常用的两种分类方法,以及混频器的各种性能指标。根据前期的基础知识,针对5G毫米波通信的带宽问题,设计了一款高隔离度的宽带混频器的。该混频器采用标准的65nm CMOS工艺,利用无源双平衡大宽带与高隔离度的优点,中频使用降Q技术的共源缓冲级补偿增益,达到很高的中频带宽。然后通过高线性度的3:3无源巴伦转化为单端信号,保证了线性度不会被恶化,插损也比较小。最后实现了13GHz(2-15GHz)的中频3d B带宽,在本振功率0d B,射频频率27GHz,本振频率21GHz时,输入1d B压缩点为-2.7d Bm;在射频频率23.5GHz-30GHz时,转换增益为-2~-0.7d B。最后,本文针对新的5G毫米波通信芯片的需求,经过对电路的改进,实现了一款高线性度的宽带混频器。混频器核心仍然使用线性度、宽带性能都较好的无源双平衡结构。为了实现良好的线性度,中频巴伦仍然采用无源巴伦,而中频缓冲级则使用线性度较好的宽带跨阻放大器。另外还使用了峰化电感,不但谐振了TIA的寄生电容,提高了带宽性能,还滤除了高频杂散,增加了混频器的谐波抑制度。最终在工作频带内实现了大于2.2d Bm的输入1d B压缩点,以及0.2d B的平坦度,转换增益为-3~-2d B。
其他文献
太赫兹技术在无线通信、安全检查、环境科学和药物检测等方面具有很大的应用潜力,也受到越来越广泛的重视。但是受限于缺乏高功率低廉便携的太赫兹辐射源,太赫兹技术的发展步伐正在放缓。大多数天然材料在太赫兹波段产生的电磁响应都不够强烈,所以人们一直在研究合适的人工材料设计太赫兹辐射源。超材料(Metamaterials)指的是一类人工设计且具备天然材料难以拥有的超常规物理特性的材料。通过适当地调整其亚波长结
在军事国防等领域,回旋行波管满足了高频段、大功率、高增益、宽带宽等特性的高要求,备受各国军工科研学学者的关注,除了上述特性要求之外,安全性也是一个重要的方面。收集极是回旋行波管的一个重要组成部分。在其收集极内,紊乱的高能废电子轰击到收集极内壁时,便会在内壁材料的表面激发产生二次电子,这些二次电子具有很大的随机性,其中可能存在的运动传输较远的二次电子轰击到收集极内后端的输出窗,及特殊条件的向高频区运
随着我国经济的高速发展,地下管线系统日益庞大,针对输油输气管线往往需要通过大江大河的情况,在管线工程中一般采用跨越和穿越两种施工方式。穿越方式是让管线从河床下方的岩石层通过,河床下方管线相较陆地下方的管线所处的自然环境更加复杂,管线更易出现安全隐患,随着河水对河床的冲刷以及河床地质结构的不断变化,管线可能存在露出河床,与河水发生直接接触的情况,造成管线的腐蚀和破损,最终导致油气泄露情况的发生。故水
冲击问题会引起结构的大变形甚至破坏,涉及到几何非线性、材料非线性和边界条件非线性。数值模拟手段为解决这类问题提供了有力工具。物质点法采用质点对变形体进行离散,质点携带位置、速度、应力、应变等信息,可以描述物体的受力和变形,适合处理与变形历史相关的本构关系。MPM在规则的背景网格上求解动量方程和空间导数,避免了拉格朗日法的网格畸变以及欧拉法的物质界面追踪和对流项处理,可以有效模拟冲击问题。陶瓷和混凝
谱半径可以反映一个图的很多性质,它的研究也是在图论中比较热门的课题.在确定谱半径的上下界,还有比较谱半径等问题上,图论中已有很多方法去进行研究.这篇论文不但运用了一些已有的方法,也提出了一些新的方法来研究图的谱半径,也获得了一些不错的结果.对于一些具有特定性质的图,文章总结出其特征多项式的特点来找出拥有同样谱半径的图,并以这些图作为参照图,进行谱半径的比较.虽然并不是所有的图都具有这些好的特点,但
本文研究了分形几何中的四个基本问题:分形的测度和维数,Lipschitz等价性以及单矩阵图递归自仿迭代函数系和代数图递归迭代函数系的共轭系统。确定分形集的Hausdorff测度的准确值是分形几何中一个基本然而非常困难的问题。迄今为止,人们仅能确定一些维数小于1或者是整数维的分形集的Hausdorff测度,而对于维数s > 1且s非整数的分形集合的Hausdorff测度没有任何结果。其困难在于缺乏一
目标电磁散射特性建模研究在雷达目标识别探测、隐身反隐身作战、矿藏勘探等领域具有重要价值。现实世界中所关注的目标,除了空、天飞行目标外,大量的目标都处于非均匀环境,如典型的地、海等半空间环境。此时,目标电磁散射不仅取决于其自身,所处的环境也会极大地影响其散射特性。因此,目标与环境的复合散射要求建立一体化的分析模型。本文针对海面这一典型环境开展研究,提出新型的粗糙半空间环境模型,并基于积分方程方法对该
2020年3月3日,在统筹推进疫情防控和复工复产的关键时期,水电市场传来好消息,东方电气集团东方电机有限公司成功中标国投云南大朝山水电有限公司6×225MW水轮机改造项目,这是东方电气历年来国内中标单机容量最大、单个合同改造台数最多的水电改造项目。大朝山水电站位于云南省临沧市云县和普洱市景东县交界的澜沧江上,共装有6台单机容量225MW的混流式水轮发电机组,电站机组均由东方电气提供。电站首台
经颅磁刺激(TMS)作为一种无创神经调控技术可以改善因疾病而造成的学习记忆损伤,而学习记忆调节依赖于突触可塑性这一生理学基础。TMS可以影响大脑神经突触可塑性,本文从结构和功能可塑性两方面综述其对突触可塑性的影响;并进一步从突触囊泡、神经递质、突触相关蛋白、脑源性神经营养因子及其相关通路揭示TMS作用机制。最后发现TMS通过对神经元形态、谷氨酸受体、神经递质的影响,以及对脑源性神经营养因子表达的调
本文研究了有限温度密度下QCD对称性的自发破缺与恢复,包含手征对称性恢复和对pentaquarkΘ+的性质和产生截面的影响,以及非对称核物质环境中的同位旋对称性自发破缺及其导致的介子混合现象。首先,我们采用有效的赝标和赝矢NΘ+K耦合来研究手征对称性在媒质中的恢复对Θ+质量和宽度等性质的影响。通过考虑微扰论展开到最低阶的Θ+自能单圈图,利用Θ+传播子的极点来求解其质量和宽度。在我们的理论框架中,手