论文部分内容阅读
近年来,拓扑电子学成为凝聚态物理学中的一大热门研究领域,比如拓扑绝缘体、量子反常霍尔效应、外尔半金属等。贝利曲率是目前解释拓扑电子学成因最被普遍认可的理论,其认为在存在电场的情况下,电子可以获得和能带的贝利曲率成正比且和电场方向垂直的反常速度,这种反常速度会从本质上影响许多电子输运现象,例如各种类型的霍尔效应。拓扑能带结构中通常具有绝缘的体态和导电的边界态,在非磁性杂质的作用下,体系中的导电边界态会被破坏,从而使体系转变为安德森绝缘体,因此产生一个十分基础的问题,即存在磁性杂质时体系的导电边界态会如何变化。另一类由杂质引起的电子输运现象是普适电导涨落,当体系的尺寸小于相位相干长度时,由量子干涉效应会产生此现象。普适电导涨落和杂质的强度、费米能级、材料类型无关,只与体系的对称性和维度有关。一维、二维等整数维度的普适电导涨落已经有了较充分的研究,但是目前还没有关于分数维度的普适电导涨落研究。分形结构是一种具有自相似特性的体系,近年来实验上已经可以通过分子自组装的方法制备出分形晶格,因此研究分数维度的普适电导涨落有重要意义。除了上述杂质引起的新奇电子输运现象,近年来随着石墨烯、六角氮化硼和过渡金属硫化物等二维层状材料的发现,与之相关的电子输运研究也备受重视。因这些二维材料层间主要以较弱的范德瓦尔斯相互作用结合,故可以将不同特定性质的二维材料堆叠形成范德瓦尔斯异质结。范德瓦尔斯异质结能够提供额外的可以调控的自由度,比如层数、层间转角等,通过调控这些自由度,可以改变体系的能带结构、电子输运特性等。传统的电子输运研究通常考虑同一层内的输运特性,而层间垂直输运的特性和机理目前尚不明确,因此有必要通过范德瓦尔斯异质结这一理想的实现层间垂直输运的平台,研究相应的电子输运性质。基于上述的研究目的,我们开展了相应的电子输运的理论研究,本论文的内容主要包括以下五个章节:第一章主要介绍了各种类型的霍尔效应的发展历史,然后介绍了贝利曲率对电场中电子运动的影响,包括反常速度的起源、贝利曲率对量子霍尔效应和反常霍尔效应的影响,最后简要介绍了范德瓦尔斯异质结的基本组成单元、分类方法、以及其在电子输运领域应用的最新研究进展。第二章采用紧束缚模型的方法研究了量子反常霍尔效应体系中由磁性杂质引起的安德森局域化,通过计算和分析不同费米速度下的电导和贝利曲率的演化过程,我们发现了一种由磁性杂质引起的安德森局域化的全新机制,即随着杂质强度的增大,导带和价带的贝利曲率会发生交换,从而使体系完成从量子反常霍尔绝缘态到金属态再到安德森绝缘态的转变。第三章采用紧束缚模型方法,系统地研究了 Sierpinski分形晶格在不同对称性的系综中的电导涨落,发现在圆酉系综和圆辛系综中存在值为0.74±0.01 e2/h的普适电导涨落现象,进一步通过分析电导分布我们发现这两个系综服从相同的分布规律。第四章采用紧束缚模型方法研究了基于石墨烯异质结的垂直输运性质,发现随着双层中心散射区长度的变化,不同类型边界的体系中均会出现准周期性振荡和电导饱和现象,接着分析了这两种现象的形成原因。第五章采用基于非平衡格林函数的第一性原理电子输运方法系统地研究了介观旋转双层石墨烯器件中的垂直方向电子输运性质,通过研究层间电导和转动轴、体系尺寸、旋转角度以及费米能之间的关系,我们发现了一些新奇的电子输运性质。第六章为博士研究生期间工作的总结和展望。