论文部分内容阅读
旋压成形是实现薄壁回转体类零件的少无切削加工先进制造技术,以其产品精度高、工艺柔性好、节约材料、易于实现机械化与自动化等诸多优点而成为塑性成形技术的重要发展方向。但普通旋压工艺生产特定工件需要配备特定芯模,应用于多品种、小批量的生产时受到限制。近年来的无芯模旋压成形虽然脱离了特定芯模的限制,但由于板料单面受力,造成加工不稳定,加工件易产生明显的回弹变形,形状精度存在明显误差。针对上述技术难题,本文提出了采用辅助支撑的方式对曲母线件进行无芯模旋压成形,增大了板料的塑性变形,提高了成形件的形状精度。本文的主要内容和贡献如下:(1)基于ANSYS/LS-DYNA有限元软件显示动态方法构建了无芯模旋压成形工艺综合仿真模型:通过提取加工中的关键部件尺寸,建立了符合实际曲母线件无芯模旋压的综合仿真模型,并通过能量法和实验对比法对模型进行了有效性验证,为后续基于辅助支撑的无芯模曲母线件旋压研究奠定了基础。(2)提出了基于辅助芯模支撑的无芯模旋压方法:通过采用与曲母线轮廓初始段相契合的辅助芯模进行支撑,与无支撑的无芯模旋压进行对比,采用仿真与实验对比的方式,研究了基于辅助芯模支撑的无芯模旋压方法对板料成形形状精度及壁厚减薄的影响。实验证明辅助芯模支撑无芯模旋压的最大形状误差为8.11mm,比无支撑的无芯模旋压提高了 81.94%,平均形状误差为1.60mm,比无支撑的无芯模旋压提高了 92.45%。并通过对三条加工轮廓曲线的仿真和实验加工,对比加工件的形状和壁厚精度,实验证明三条轮廊曲线辅助芯模支撑无芯模旋压加工的最大形状误差的算术平均值为6.45mm,平均形状误差的算术平均值为1.61mm。说明辅助芯模支撑的无芯模旋压方法对板料成形整体弯折影响较大,但对凹凸程度较大的曲母线,加工中会出现过变形。(3)提出了基于辅助旋轮脉动支撑和随动支撑的无芯模旋压方法:将板料在径向方向上的变形过程看成板料的局部变形,沿径向方向划分为若干个小段,并对每个小段用辅助旋轮进行支撑。采用仿真和实验对比的方式,分别对三条曲母线轮廓进行加工,对比加工件的形状和壁厚精度,研究了基于脉动支撑和随动支撑的无芯模旋压方法对板料成形形状精度及壁厚减薄的影响。实验证明辅助旋轮脉动支撑无芯模旋压加工的最大形状误差的算术平均值为19.66mm,平均形状误差的算术平均值为10.19mm,随动支撑无芯模旋压加工的最大形状误差的算术平均值为19.68mm,平均形状误差的算术平均值为9.80mm,但加工件形状与目标形状相仿,无过变形产生。(4)提出了基于复合脉动支撑和复合随动支撑的无芯模旋压方法:综合了辅助芯模支撑和辅助旋轮支撑在板料成形中的优势,提出了同时采用辅助芯模和辅助旋轮进行复合支撑的无芯模旋压方法。采用仿真和实验对比的方式,分别对三条曲母线轮廓进行加工,对比加工件的形状和壁厚精度,研究了基于复合脉动支撑和复合随动支撑的无芯模旋压方法对板料成形形状精度及壁厚减薄的影响。实验证明复合脉动支撑无芯模旋压加工的最大形状误差的算术平均值为8.87mm,平均形状误差的算术平均值为3.70mm;复合随动支撑无芯模旋压加工的最大形状误差的算术平均值为4.55mm,平均形状误差的算术平均值为1.37mm,无过变形产生,成形效果为最优。(5)对基于五种辅助支撑方式的无芯模旋压方法进行了综合对比,并对最优成形方式进行了应用实例验证。从加工件整体及部分的轮廓形状精度及壁厚减薄情况深入分析了各种支撑方式对产品加工的综合影响,并将辅助支撑对无芯模旋压加工的影响程度进行了量化表示。最后,对最优方式的复合随动支撑无芯模旋压方法采用五种不同的加工轮廓曲线进行了实验加工,实例加工件的最大形状误差在5.91mm左右,平均形状误差在2.48mm左右,最小壁厚在1.19mm左右,最大壁厚减薄率在36.68%左右,平均壁厚减薄率在20.14%左右。进一步验证了复合随动支撑在无芯模旋压加工不同曲母线件上的加工柔性。