【摘 要】
:
光学一直以来都是物理学中重要的一部分。随着强磁场技术的不断发展与完善,运用强磁场下的光谱技术发现了材料中许多新的物理现象,也解答了许多物理疑问,比如探究强磁场诱导的绝缘体金属相变的内在机理。除此之外,伴随着激光的飞速发展,非线性光学尤其是二阶非线性光学(SHG)也被广泛的用于探究薄膜和复合材料的表面和界面状态以及材料的晶格,铁电,铁磁结构。尤其是对于一些表面比较脆弱的材料和异质结,二阶非线性光学表
论文部分内容阅读
光学一直以来都是物理学中重要的一部分。随着强磁场技术的不断发展与完善,运用强磁场下的光谱技术发现了材料中许多新的物理现象,也解答了许多物理疑问,比如探究强磁场诱导的绝缘体金属相变的内在机理。除此之外,伴随着激光的飞速发展,非线性光学尤其是二阶非线性光学(SHG)也被广泛的用于探究薄膜和复合材料的表面和界面状态以及材料的晶格,铁电,铁磁结构。尤其是对于一些表面比较脆弱的材料和异质结,二阶非线性光学表现出了很强的优势。本文介绍了强磁场下的光谱和非线性光学两种技术手段在探究材料物性上的应用。主要工作内容如下:首先在绪论部分,我们分别对强磁场下的光谱和非线性光学做了概括介绍。第二节介绍了强磁光实验在国际上的发展及研究现状。第三节介绍了非线性光学尤其是二阶非线性光学的原理,及在材料中的应用。第四节主要介绍了本文的研究动机及研究内容。第二章介绍了我们实验室中搭建的SHG光路系统。第一节主要介绍了 SHG光路系统的搭建以及激光器,光电倍增管,锁相等元件的使用情况。第二节简单介绍了基于此光路系统的Labview数据采集系统,以及适合我们光路的两种运行程序。第三节介绍了基于此光路系统的Matlab数据仿真系统。通过这个仿真系统我们可以模拟出不同样品的SHG极化图。第四节介绍了基于这些测试系统进行的相关合作。比如用显微SHG光路探究二硫属化合物WSe2的结构,表征薄膜材料的铁电相变温度等。第三章主要介绍了用磁光谱的方法研究了具有G型反铁磁结构的双层钌氧化物Ca3(Ru0.91Mn0.09)207(CRMO)单晶。发现CRMO单晶中不仅存在磁场和温度诱导的金属绝缘体转变。而且通过对磁光谱精细特征的分析,发现CRMO中Ru离子的4d轨道在低温下是处于反铁磁/铁轨序(AFM/FO)结构,且在金属绝缘体相变的关键点附近存在相分离。第四章主要介绍了我们利用非线性光学中二次谐波的技术发现了钛/疲劳钛酸锶异质结界面处的极化整流效应。并通过拉曼,介电等测量手段发现这种疲劳的钛酸锶处于原始铁电态与铁电态之间的中间态。我们通过反复施加电压的方法在Ti/SrTiO3/Au异质结的Ti/SrTiO3的界面处引入了适量的氧空位。这些氧空位和其周围的巡游电子组成了“极化子”。我们利用二次谐波的技术测量了不同方向电压下的电极化,验证了这种“极化子”的极化整流效应。另外,通过不同温度,不通电场下的拉曼,介电等测量手段还发现这种疲劳的SrTiO3展现出了预铁电态效应。这些发现不仅为进一步研究钙钛矿氧化物的铁电态提供了途径,而且提出了一种新型的电极化整流装置,可能成为未来电子器件的基础。第五章主要介绍了 MOF材料中的非线性光学效应。MOF由于其骨架型结构等独特的优势使其成为了一个高度可调的平台,在光学、电学、磁性材料、化学传感、催化和生物医学等领域都有着巨大的应用潜力。尤其是在近几年来,表现出优异的非线性光学性质,使其成为最有潜力被利用的固态非线性材料之一。我们也介绍了相关的实验进展,为构建出非线性性能更好的MOF材料,我们设计了一种新的配体结构的MOF-1,并对其进行了光学性能表征。目前该实验还在进行中。第六章是工作总结和展望,强磁光在材料的物性表征中发挥着越来越重要的作用。利用强磁光也发现了很多之前未发现的物理现象,解决了很多物理问题。伴随着强磁场技术的发展,我们也会提高强磁场下光谱技术的测量范围、精度,以期能够更广泛的应用在材料的物性表征中。非线性光学尤其是二阶非线性光学具有对晶体对称性敏感、非接触性、不需加工、操作方便等优点。已经被越来越广泛的被应用到新型材料的物性表征中。但我们对于材料的光学研究还处于初步发展阶段,有一些问题和技术仍需要深入的研究。
其他文献
随着密度泛函理论以及相关算法的不断发展与完善,原子尺度的计算模拟已经成为研究材料物理化学性质的重要手段之一。材料中电子或原子周围的环境往往直接决定着其最终的性质。对于环境效应,通常采用简谐近似,如电子附近的晶格的运动往往采用简谐振动来处理,或是直接模拟原子的真实运动,如分子动力学。本文主要是应用第一性原理来研究环境效应对电子输运以及高温表面反应的影响。采用简谐近似,即可以将晶格的振动理解为声子,常
细胞具有感知周边力学刺激并将其转化为生理生化信号的能力,简称力生物学感应。这种能力使细胞能够通过细胞骨架微结构的重塑来适应周围的物理微环境,并激活多个信号通路,影响和改变基因表达。这些现象包括了两个重要过程:机敏感知(mechanosensing)和机械传导(mechanotransduction)。在这些过程中,机械信号(力或者变形)从细胞外部环境被传递到细胞内的蛋白质和细胞器上。细胞皮质中的肌
钛及钛合金因其优异的生物相容性、高比强度、低弹性模量和耐腐蚀性等特点,被广泛应用在生物医用领域。Ti-6Al-4V、Ti-5Al-2.5Fe和Ti-6Al-7Nb等早期生物医用钛合金一方面含有Al、V等毒性元素,另一方面其弹性模量远高于人体骨骼。此类合金植入物与骨骼之间弹性模量过大的差异,将会使应力载荷集中在植入物,而造成骨吸收,产生“应力屏蔽”现象。新型β钛合金作为第三代生物医用钛合金,在除无金
本论文主要讲述了我博士期间主要参与的基于超冷6Li-41K原子的四个实验研究工作。论文一开始首先先从Feshbach共振附近的超冷原子和光晶格中的超冷原子两个方面,简单介绍了超冷原子实验是如何发展成为当今研究强关联多体系统的理想平台。紧接着,本人在论文的第二章中简单介绍了玻色气体和费米气体的基本性质、强相互作用费米气体膨胀动力学和Feshbach共振技术;在第三章中主要分别介绍了光阱与光晶格的基本
如何调控材料的关联有序电子态一直是凝聚态物理领域的热点问题之一,诸多的新奇物相通过化学掺杂或者施加高压的方式得以发现。超导电性作为其中的重要分支,自发现以来便因其丰富的物理性质和广阔的应用前景得到了广泛关注。载流子浓度大小作为影响材料物性的关键因素,在超导研究领域扮演着重要角色。通过控制载流子浓度大小等方式来调控材料的超导电性及其他相关物性对于理解超导机理和发展器件应用都意义非凡。在本论文中,我们
随着半导体技术以及激光品质的提高,一种由激子和光子的强耦合形成的准粒子——激子极化激元成为了实现玻色爱因斯坦凝聚体新的实验手段。与一般的凝聚体实现方法不同,激子极化激元是半导体微腔的耗散和驱动共同作用下的非平衡体系,具有有限的寿命。极化激元的光子部分会不断地从微腔中漏出,科研人员通过观测漏出的光子便可以得到极化激元的全部信息。由于极化激元的哈密顿量是非厄米的,所以这个系统是实现非厄米拓扑、非平衡霍
凝聚态物质中奇异的电子行为通常可以激发一系列有趣的量子行为和层展现象。钙钛矿锰氧化物是一种典型的强关联体系。由于自旋、电荷、晶格和轨道等自由度的耦合,锰氧化物具有丰富的电子相图和物理性质,其中电子相分离是其最重要的物理特性之一。本文主要通过维度、金颗粒覆盖和光照对低维锰氧化物实空间的电子相分离进行调控,从而调制其磁学和输运行为。另一方面,近年来Weyl半金属由于其动量空间独特的拓扑电子结构受到研究
目的 :分析上海市嘉定工业区2014-2020年水痘的流行病学特征,为水痘的防控工作提供参考依据。方法:通过中国疾病预防控制信息系统收集上海市嘉定工业区2014年1月1日至2020年12月31日报告所有水痘病例信息,采用描述性方法进行分析。结果 :上海嘉定工业区2014-2020年水痘的年均发病率为77.53/10万,发病率总体呈下降趋势,2020年发病率明显偏低。水痘的好发年龄段为5~9岁,职业
复杂系统中的普适性是物理学研究的重要问题。伴随着超冷原子研究的进展,人们验证发现了一系列极低温下少体系统的普适性,特别是Efimov效应。本文基于23Na40K超冷原子体系,主要研究了 Feshbach共振附近的弱束缚态分子的原子交换反应,并观测到了可能存在的普适性。我们介绍了一套全新的23Na40K超冷极化分子装置的原理和搭建,使用了改进的控制系统与自行开发的图像采集处理软件,其具有界面友好易于
核酸作为已知生命形式中必不可少的生物聚合物或生物大分子,承载着储存和编码生命体遗传信息的重要职责。随着DNA纳米技术领域的发展,自然系统中的核酸复杂结构与功能已被广泛研究,核酸自身的特点与优势也被精准剖析,使其不仅能作为纳米材料成功地构建出复杂的纳米结构、器械与反应网络,更是推动了核酸作为可设计性的基因表达网络与强大特异性识别系统在合成生物学、分子生物学以及生物物理学等领域中的应用。而本论文中我们