【摘 要】
:
二维纳米材料,尤其是过渡金属硫族化合物,由于其令人着迷的光电性能,可调的带隙,出色的柔韧性和稳定性而引起了越来越多的关注。二维二硫化钼(MoS2)凭借独特的谷底偏振光学响应,快速的光学响应速度以及在很宽的波长范围内有非常高的光吸收率,使其在光电器件中得到了广泛应用。表面电势与纳米材料的功函数和费米能级有关联,对研究载流子浓度,电荷传输,接触势垒和纳米器件的设计具有重要意义。因此,研究二维MoS2的
论文部分内容阅读
二维纳米材料,尤其是过渡金属硫族化合物,由于其令人着迷的光电性能,可调的带隙,出色的柔韧性和稳定性而引起了越来越多的关注。二维二硫化钼(MoS2)凭借独特的谷底偏振光学响应,快速的光学响应速度以及在很宽的波长范围内有非常高的光吸收率,使其在光电器件中得到了广泛应用。表面电势与纳米材料的功函数和费米能级有关联,对研究载流子浓度,电荷传输,接触势垒和纳米器件的设计具有重要意义。因此,研究二维MoS2的表面电势对其电子、光电甚至压电器件的设计和应用都至关重要。本文通过化学气相沉积法制备了不同层数的二维MoS2,并成功转移至不同衬底上做成约束应变样品。利用原子力显微镜(AFM)研究了光场和约束应变对二维MoS2表面电势的影响,以及对约束应变MoS2样品进行了电学与光电学测试。本文主要研究内容如下:(1)结合拉曼光谱和AFM验证MoS2的层数,再通过将光场引入扫描开尔文探针显微镜(KPFM)测试模块,测量了无光和有光条件下不同层数MoS2的表面电势。结果表明,有、无光照条件下奇偶层MoS2表面电势的差值(ΔCPD)存在明显的震荡行为。(2)基于横向光伏和压电效应,推导出ΔCPD的理论表达式,并由此解释了光照下MoS2的ΔCPD震荡行为。利用密度泛函理论计算得到了单层MoS2的压电电荷宽度((240))),进一步可知单层MoS2的理论ΔCPD值,发现其与实验值非常接近。奇数层MoS2的压电系数和(240))都会随着厚度的增加而减小,故ΔCPD也是逐层减小。当MoS2层数大于7或为偶数时,由于它们的压电系数几乎为零,所以ΔCPD是比较稳定的。(3)利用KPFM对约束应变MoS2样品进行表面电势的测量,发现MoS2表面电势的分布受与衬底的接触状态影响。悬浮的圆槽区域样品CPD值比平坦区域要高,但对触底的长方形槽样品而言,只有槽线边缘的样品CPD值相对平坦区域会大幅度减小。(4)对长方形槽衬底上的MoS2进行电学与光电性能测试,可以发现越接近槽线区域的样品所受应变越大,载流子浓度、电导率与光电开关比也越高。约束应变引起的费米能级上升、导带与价带能级的下降,导致表面电势减小、肖特基势垒的降低及应变区域的激子累积,进而影响二维MoS2的电学与光电性能。
其他文献
二月二晴,黑霜煞一层;二月二下,庄农搭一架;二月二阴,麦子起身齐崩崩。——民谚关于这些节气的民谚,老人们是熟稔于心的。一些祖祖辈辈留下的口诀,在心里,念叨久了,像珠子,就打磨得温润光滑了。这一年的二月二,天晴。田野萧杀,村庄瑟缩。黑霜,落了一层。真是黑霜,如薄刃,
超级电容器作为新型储能器件具有内阻低,电流效率高以及充电速率快等特点。但其较低的能量密度限制了超级电容器的应用范围。众所周知,电极材料的选择关系着超级电容器的性能特征。过渡金属化合物由于理论比电容较高而受到关注,但其固有电导率低和体积膨胀大成为制约其应用的关键。本文从探讨如何合成性能优异的复合材料以及扩宽工作电压两方面出发,优化电极材料制备工艺技术,制备性能更优良的超级电容器。论文的主要研究工作如
多年来发夹型核酸探针因其特异性和灵敏性,在生物传感器的研究方面已取得了许多有效的进展。新型发夹型DNA荧光探针具有低背景信号、高灵敏度、高选择性、低成本、高信噪比、猝灭效率好等优点,是一种发展前景广阔的新型核酸分子探针。发夹型核酸探针是一类广泛应用于化学、生物学和医学的具有识别功能的DNA检测工具。在生物分析中它可以于细胞内成像、小分子检测、基因检测与治疗、生物传感器和生物芯片、实时荧光定量PCR
含硫,氮杂环化合物广泛存在于天然产物和有机药物分子中,并被应用于各个化学领域。伴随着有机合成化学的发展,它们越来越被人们所重视,其中二芳基硫醚和喹啉衍生物更是在这类化合物中扮演着重要的角色。人们发现在许多生物体内都含有它们,与此同时二芳基硫醚和喹啉衍生物还被大量应用于有机半导体材料,功能材料和生物工程等领域。关于二芳基硫醚化合物和喹啉衍生物的合成方法在近些年来一直被有机化学家和医药研发者开发和改进
聚酮(PK)是一种新型绿色工程塑料,在汽车部件、包装薄膜及电子电器等方面的应用得到了广泛的关注。近些年来,针对PK增强改性的研究较多,主要通过添加无机增强填料复合来改善PK的力学性能。无机晶须是一种重要的增强填料,目前在PK上的应用研究较少。本文选取了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)为增强填料与PK共混制备了PK/晶须复合材料,研究了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)
近年来,具有局部表面等离子体共振(LSPR)的等离子体光催化剂已经在光催化技术领域得到了广泛的关注。金属纳米粒子(Au、Pt、Ag、Cu等)通过金属局部表面等离子体共振(LSPR),可以有效的将低能太阳光子转换成化学能。但金属纳米粒子由于自身存在载流子复合率过高的问题,导致热电子传输效率过低。本文在简易的光催化体系下,首先探究了不同金属的局部表面等离子体共振(LSPR)效应以及金属铜的不同形貌对局
随着白色污染的加剧和人们环境保护意识的提升,一次性塑料制品的使用受到了限制,其中低密度聚乙烯(LDPE)薄膜占据了重要地位,开发一种可取代LDPE的全生物降解薄膜材料成为了当下的热门话题。本文从聚对苯二甲酸-丁二醇-己二酸共聚物(PBAT)全生物降解薄膜的原料配方、基本物性以及成型工艺进行研究。选用全生物降解材料聚丁二酸丁二醇酯(PBS)增强PBAT,形成PBAT/PBS共混材料,采用扩链剂提高P
当今世界各国的可持续发展因能源和环境问题而受阻,但市场对高性能储能设备的需求却日益增加。锂离子电容器和锂基双离子电池是两类适应时代发展出现的新型锂基储能器件,因兼具高能量密度,高功率密度以及长循环寿命的特点而受到广泛关注。而电极材料很大程度上决定了器件的性能,因此开发具有高性能的电极材料是提升器件性能的关键。本文合成两种钙钛矿型电极材料,将二者作为负极材料探究它们在锂离子电容器和锂基双离子电池中的
环己酮是一类大宗石油化工原料,由于其廉价易得和便于操作的优点,被广泛应用于现代化工生产中。环己酮既是制备工业产品尼龙、己内酰胺和己二酸的主要中间体,也可用作医药、涂料、染料等精细化学品的重要中间体,还是一种重要的工业溶剂。近十年来,以环己酮脱氢芳构化作为芳基源而被应用于有机合成中,相较于传统金属催化的偶联反应,这类反应一般无需使用复杂的反应底物。伴随着“绿色化学”理念的推广,无过渡金属参与的环己酮
荧光成像技术因其能够进行可视化、高灵敏、实时信号反馈等优势,被广泛应用于生物医学成像研究。近红外荧光染料的发射波长较长(650-900 nm),具有较低的背景干扰、较好的组织穿透能力、较小的光损伤等亮点促进了探针在生物医学方面的应用,但是目前所报道的近红外荧光探针存在光稳定性差、斯托克斯位移小、成像信号单一等问题,基于此,本论文主要围绕着生物活性分子的检测设计开发了一系列近红外荧光探针,经过对其光