基于水分影响的沥青-集料界面粘附性能失效研究

来源 :广州大学 | 被引量 : 0次 | 上传用户:angelleosy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
沥青路面在使用过程中易出现松散、沉陷、坑洞等早期损害现象,这些病害的出现往往伴随水分的作用,使得沥青路面的使用寿命和安全性能大幅下降。沥青混合料产生水损害现象的原因是路面在车辆荷载的反复作用下,集料发生相对位移和摩擦,刺破或擦破沥青膜,使得从空隙进入沥青混合料的外界水分易通过沥青膜的破裂位置侵入到集料表面,形成取代沥青膜的水分薄膜,导致沥青与集料间粘附能力失效。因此,深入研究沥青膜破裂,水分侵入造成的水损害过程以及水分对沥青-集料界面强度劣化规律,针对性的改性沥青-集料界面,降低界面中水分扩散对界面粘附能力的影响,减少沥青路面的水损害,提高路面使用寿命和安全性能。首先,本文通过拉拔试验研究了常温下不同浸水时间对70#基质沥青与酸性集料花岗岩、碱性集料石灰岩粘附能力的影响。结果表明,干燥环境下,沥青与花岗岩和石灰岩之间粘附能力较好,然而沥青-集料界面试件浸水时间的增加,使得试件拉拔强度减小,沥青与集料的粘附性能下降,同时因为水分不断侵蚀覆盖集料表面的沥青膜,所以沥青-集料界面的形貌也在发生变化。沥青-花岗岩界面受水分侵蚀影响最为严重,抗水损害能力弱于沥青-石灰岩界面。其次,采用高光谱成像技术精准识别、无损检测花岗岩和石灰岩表面的矿物组分以及分布,确定选用的花岗岩主要组分是钠长石,石灰岩的主要组分是方解石。最后,利用分子动力学模拟方法,从原子尺度研究了沥青-钠长石界面和沥青-方解石界面在外界水分侵入界面前后,沥青自身结构发生的改变,沥青各组分在集料表面的分布、浓度和扩散以及沥青与集料粘附能力的变化。结果表明,界面水分的作用使得集料表面的沥青组分分布更加均匀,明显降低极性较强组分沥青质和胶质的浓度,提升轻质组分和胶质的扩散速率,从而导致沥青结构、界面微观特征形貌的改变和沥青与集料粘附性能的下降;水环境下,沥青-方解石界面的剥离能绝对值大于沥青-钠长石界面的剥离能绝对值,所以沥青-方解石界面的抗水损害能力强于沥青-钠长石界面的抗水损害能力。对于沥青-酸性集料界面,可以在沥青中添加硅烷偶联剂(SCA),有效提高界面的抗水损害能力。
其他文献
随着无线通信技术的快速发展以及无线接入设备的不断普及,无线通信网络已经越来越与人们的生活息息相关。随着用户以及接入设备的不断增加,网络通信的安全性也受到广泛的关注。由于无线信道的广播特性,无线网络的数据传输很容易受到潜在的非法用户的窃听,造成信息的泄露。随着设备计算能力的不断提高,传统基于密码学采用密钥加密的方案逐渐不能满足安全传输要求。物理层安全(Physical Layer Security,
中国智能钢琴行业发展起步较早,目前智能钢琴产业的行业机构主要有原材料供应商、设计和服务供应商、销售代理商、售后服务商以及消费者。由于智能钢琴产业参与主体的增加,产业生态逐渐变得更加庞大,竞争更加激烈。本文以珠江钢琴集团智能钢琴项目的风险管理作为研究内容。先从项目的主要风险点以及风险管理存在的问题开始介绍。然后,按照智能钢琴项目立项、生产和销售三个部分,对本项目进行风险识别。最后利用层次分析法结合模
中水主要是指城市污水或生活污水经处理后达到一定的水质标准,可在一定范围内重复使用的非饮用水,但中水中仍含有一定量的氮磷营养盐,排入水体仍易导致水体的富营养化,目前主要用于园林绿化、农业灌溉等从而实现水资源重复利用。本文以葛仙米(Nostoc sphaeroides)为实验材料,设计单因子实验,通过改变藻体密度、光强、温度和球体大小,研究了葛仙米对中水氮磷的去除效果,并探讨了葛仙米在中水中的生长及光
1911年,英国爱尔兰长老会传教士傅多玛在来华27年后于中国奉天(今沈阳)著成一部详细记录了清末北京官话的汉语教材——《汉英北京官话短语》(下文简称《官话短语》)。该教材中所收集的语料来自于作者对当时日常生活中汉语口语的真实记录,客观地反映了当时的北京话乃至北方官话的语言特点。该教材不仅是研究北京话历史风貌和发展历程的重要语料,也是研究近代汉语晚期语言现象的宝贵资料,对汉语语言学史和对外汉语教育发
我国大部分桥梁都是钢筋混凝土梁桥,其中大部分桥梁就已经运营了几十年,桥梁在运营期间内,除了承受来自外界环境和自身材料劣化等因素的影响,主要承载不断变化的运营车辆荷载。随着交通荷载的增长,车辆拥堵程度也日趋严重,给桥梁结构带来不同程度的损伤,结构内部的损伤不断积累,最终导致桥梁的疲劳破坏。本文为分析运营车辆荷载对既有城市桥梁剩余疲劳寿命的影响,主要开展了如下研究工作:(1)对钢筋及预应力钢筋、钢筋混
压力驱动膜法水处理技术(微滤、超滤、纳滤、反渗透)具有出水水质稳定优良、膜组件易于模块化设计组装、结构紧凑占地面积小、自动化运行程度高等优势,近年来在国内外逐步开展了规模化工程应用。膜污染高效防控是提高该技术经济性的关键。准确快速评估进水膜污染潜势对膜污染的高效防控意义重大。本研究以单一和组合膜污染模型分析为基础,通过不同浓度模型污染物的梯度过滤(微滤→超滤→纳滤)试验优化建立梯度过滤膜污染潜势定
在建筑结构的运营中,结构安全运行离不开结构健康监测系统。一旦建筑结构的某个部件损坏或功能失效,必将导致经济损失,严重时甚至会导致人员伤亡。定期对结构的性能以及构件质量进行监测,是减少工程事故的有效途径。结构参数识别在土木工程健康监测中起着至关重要的作用,时频分析方法在结构参数识别中被广泛运用,但经典的时频分析方法如小波变换、经验模态分解等在土木结构的模态参数识别中存在一定的缺陷。本文将对各类损伤识
农业土地资源是国家战略资源,也是人民赖以生存和发展的物质基础。快速精准地感知农用地信息是实现农业土地资源有效保障的关键一环。高分辨率数据包含了更丰富的特征信息、更清晰的邻域空间关系信息以及更复杂的光谱特征信息,为农用地自动分类提供了发展机遇。在农用地分类的实际应用中,传统目视解译法、基于统计分析的分类方法以及机器学习分类方法已得到广泛应用,并逐渐向更高层次的智能化方向发展。但在高分遥感影像农用地自
弹性波超构材料是通过在特征尺度上进行人工设计,使其具有超越常规材料的力学性能的一种复合材料。它可以实现亚波长宽频带隙、负等效质量、负等效刚度等超常力学动态性能,在土木工程中隔振、减震、能量收集、降噪等方面有着极大的应用前景,也吸引了学界和工程界的广泛关注。微结构的几何参数与材料属性对弹性波传播行为有着显著影响,快速实现满足工程结构要求的反向设计是进一步提升弹性波超材料应用的重要方向。由于设计空间较
城市化的急剧扩张,建筑能耗愈来愈大,市政电网的昼夜负荷差距逐渐变大,蓄能技术对于平衡电网峰谷负荷具有重要作用,受到更多的关注和推崇。冰蓄冷空调系统稳定,高效和安全,是蓄冷空调系统设计与运行的着眼点。封装式空调系统的系统具有结构简单,灵活等优点,冰球式冰蓄冷系统是目前最普遍的形式之一,但是冰球式存在比表面积低,蓄冰后期的冷量增加缓慢,蓄冷效率衰减较快、冷量损失较大等问题,因此有必要开发具有蓄冷密度高