论文部分内容阅读
全国人大代表曾香桂:制定适应新就业形态的劳动权益保障体系
【出 处】
:
东莞日报
【发表日期】
:
2020年01期
其他文献
《中国制造2025》行动纲领的提出,标志着我国进入到工业人工智能阶段。工业物联网是推动传统工业制造和生产实现信息化、智能化的核心技术,区别于其他物联网应用技术,它具有高实时性,高可靠性的特点。传统的解决方法是将信息处理和业务决策等任务放置到云端进行计算,然而,随着工业设备的数量逐渐增加,传统的云计算模式存在高时延等问题,不能满足工业现场实时任务的处理要求。因此,边缘计算作为一种有效的方法被广泛使用
在大数据和人工智能盛行的今天,如何高效地在大量的数据中挖掘出用户感兴趣的商品、音乐等项目是推荐系统的主要任务。现如今,用户的个性化推荐在诸多领域都发挥着不可忽视的作用,例如电子商务网站将收集到的众多用户的浏览、购买、评价等历史记录数据加以挖掘、分析进而预测用户可能感兴趣的商品来将其推荐给用户;在线音乐平台同样也可以根据用户收听、收藏、喜爱的音乐类型风格等数据分析用户感兴趣的作品来进行推荐。当前推荐
随着多媒体和互联网技术的融合发展,短视频以其时长短、内容精练等特点获得广大用户的喜爱。自2010年开始,短视频开始逐渐出现在人们的视野当中,短时间内立刻吸引了大量用户的关注,与短视频相关的话题数据持续增长,成为了当下互联网最为主要的流量入口之一。与之相呼应,研发并应用短视频推荐算法成为各大网络平台吸引用户的重要方式。个性化推荐算法就是根据每个用户的基本信息以及社交信息等,推测出每个用户的不同偏好,
随着移动互联和大数据的飞速发展,互联网即将从Web2.0时代迈入Web3.0时代,这意味着互联网每日产生的数据量将不断暴涨,“信息过载”问题愈发严重,用户如何在海量数据中得到想要的信息成为当下亟待解决的难题。推荐技术的发展与普及很大程度上缓解了该难题,通过分析用户历史数据获取其喜好从而进行推荐。籍此,该技术迅速在学术界和工业界盛行并应用于诸多领域。目前,越来越多研究者致力于研发各种优良的推荐算法,
后疫情时代背景下,现代信息技术被广泛应用到各行各业,互联网经济、数字经济和平台经济快速发展,新技术、新业态催生出多种新型就业形态并逐渐繁荣。灵活就业作为新的非标准就业模式,在后疫情时代逐步成为高校毕业生就业的一种重要形式。越来越多的高校毕业生主动选择新型的灵活就业形式投身人力资源市场,加强高校毕业生新业态灵活就业特点和问题的研究,及时出台更有针对性、实效性的灵活就业政策意义重大。
文本分类是自然语言处理领域里的一个重要任务,被广泛用于热点挖掘、舆情、分析、产品分析、电影推荐、金融风险分析、欺诈识别等等。随着Web 2.0时代的来临,面对网上越来越多的文本信息,传统的基于统计学的方法已经无法满足需要。深度学习的出现,使得文本分类任务有了新的处理方法,也使得深层次的神经网络的训练成为了可能。然而,深层网络带来的梯度消失问题会导致网络难以训练。因此,如何训练深层神经网络是当下的研
随着5G、WiFi等网络技术的发展和智能移动设备的普及,基于位置的社交网络(LBSN,Location-based Social Network)已成为人们关注的焦点。兴趣点(Point-of-Interest,POI)推荐作为LBSN领域的一个研究热点,它通过对海量的签到数据进行分析和挖掘,为用户提供个性化的兴趣点推荐。这不仅让POI服务商更加充分理解目标受众,而且为用户自主出行提供更为便利的信
随着互联网的兴起,越来越多的学习者选择通过在线教育平台进行学习。不同于传统的课堂教育由教师主导学习者的学习进程与学习活动,在线教育平台提倡因材施教,即根据学习者的知识水平为学习者提供个性化的教学内容与学习路线,然而学习者的知识掌握程度随学习进度不断变化,因此实时追踪学习者知识掌握程度变化尤为重要。知识追踪任务旨在根据学习者历史学习行为实时追踪学习者知识水平变化,并且预测学习者在未来学习表现。知识追
随着互联网的不断发展,越来越多的网民将社交媒体作为获取信息的主要途径,人们在网络空间中快速、自由地发布信息、社交互动、情感交流。微博作为网络信息传播最具代表性的应用之一,越来越多的网民通过微博来发布、获取和传播信息。微博上蕴含着个人观点的实时评论具有潜在的舆论导向,由此形成网络舆情。然而,网络舆情事件往往是突发的、难以预知的。近年来,对于舆情事件的相关研究层出不穷,现有算法无法高效对网民情感及舆情