论文部分内容阅读
针对传统BP神经网络训练中收敛速度较慢的缺点,将一种基于L-M算法的神经网络应用于液压泵故障诊断,并建立了基于该算法的故障诊断模型;论述了液压泵的故障特征频率,研究基于LabVIEW的频率提取与后期神经网络的处理方法.仿真结果表明:该方法和模型显著缩短了Oil练时间,运用神经网络方法进行液压泵故障诊断是有效的.