论文部分内容阅读
An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.
An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30 % higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption discussed.