论文部分内容阅读
针对目前支撑向量机核函数的选择没有统一规则的现状,提出了一种结合数据分布特征进行支撑向量机核选择的方法。首先,采用多维尺度分析方法对高维数据集合理降维,提出判断数据集是否呈圆形分布的算法,在得到数据集分布特征的基础上进行核选择,达到结合数据分布特征合理选择支撑向量机核函数的目的。实验结果表明:呈圆形分布的数据集采用极坐标核进行分类,识别率达到100%,训练时间短,优于采用神经网络、决策树、高斯核及多项式核的分类效果。该方法提高了支撑向量机的泛化能力。