论文部分内容阅读
Hydrate formation in the oil and gas industries has been a serious problem for a long time. It may cause many difficulties for instance in gas pipelines blockages. In order to determine the hydrate forming condition, gas gravity method has been used. Several correlations have been proposed based on gas gravity method. Checking the accuracy of the applied correlations is important. In this paper, the leverage approach is used for this purpose. Leverage approach is a statistical method for detection outliers which identifies the applicability domain(AD) of hydrate data predicting correlations and the quality of the existing data. Moreover, the Williams plot is sketched, which is a graphical depiction for determination of the doubtful points. The obtained results showed the existing correlations are all statistically correct and valid to predict hydrate formation temperature, just one data point is out of the applicability domains, and none of the experimental data can be chosen as outliers.
Hydrate formation in the oil and gas industries has been a serious problem for a long time. It may cause many difficulties for instance in gas pipelines blockages. Several orderly determine the hydrate forming condition, gas gravity method has been used. Several correlations have been proposed based on gas gravity method. Checking the accuracy of the applied correlations is important. In this paper, the leverage approach is used for this purpose. Leverage approach is a statistical method for detection outliers which identifies the applicability domain (AD) of hydrate data predicting correlations and the quality of the existing data. Moreover, the Williams plot is sketched, which is a graphical depiction for determination of the doubtful points. The obtained results showed the existing correlations are all statistically correct and valid to predict hydrate formation temperature, just one data point is out of the applicability domains, and none of the experimental data can be chosen as outlie rs.