论文部分内容阅读
目的:评估终末期肝病模型联合血清钠评分(MELD-Na)、慢性肝衰竭-序贯器官衰竭评估模型简化评分(CLIF-C OFs)、中国重型乙型肝炎(乙肝)研究组乙肝相关的慢加急性肝衰竭预后评分(COSSH-ACLFs)、中性粒细胞/淋巴细胞比值(NLR)评分系统在乙型肝炎病毒相关慢加急性肝衰竭(HBV-ACLF)患者中的应用价值。方法:回顾性收集2010年7月至2018年7月天津市第二人民医院收治的163例HBV-ACLF患者的临床资料(性别、年龄、疾病分期)以及实验室检查指标〔丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、总胆红素(TBil)、白蛋白(ALB)、血尿素氮(BUN)、肌酐(Cr)、血钠(Na)、凝血酶原活动度(PTA)、国际标准化比值(INR)、中性粒细胞计数(NEU)、淋巴细胞计数(LYM)〕,以入院8周为观察时间节点,根据预后不同将患者分为存活组(90例)和死亡组(73例)。比较死亡组和存活组的MELD-Na、CLIF-C OFs、COSSH-ACLFs评分及NLR差异,并行Logistic回归分析,确定HBV-ACLF的独立危险因素。行倾向匹配分析,验证独立危险因素的准确性,绘制受试者工作特征曲线(ROC),判断独立危险因素的临床价值。结果:存活组和死亡组患者入院时性别、疾病分期、ALB、BUN、Cr、Na、NEU水平比较差异均无统计学意义(均n P>0.05);存活组年龄、ALT、AST、TBil、INR水平均明显低于死亡组〔年龄(岁):43.00(34.00,53.00)比50.00(42.50,55.00),ALT(U/L):252.90(61.43,613.33)比359.10(115.15,784.70),AST(U/L):146.15(90.88,449.30)比237.80(109.00,635.05),TBil(μmol/L):265.10(183.10,347.60)比307.50(229.90,405.55),INR:2.13(1.91,2.46)比2.29(2.02,2.94)〕,PTA和LYM水平均明显高于死亡组〔PTA(%):34.00(28.00,38.00)比31.00(24.00,36.00),LYM(×10n 9/L):1.37(0.72,1.79)比0.85(0.51,1.39),均n P<0.05〕;与死亡组比较,存活组MELD-Na、CLIF-C OFs、COSSH-ACLFs评分及NLR均更低〔MELD-Na评分(分):17.99(16.60,19.63)比19.16(17.43,20.80),CLIF-C OFs评分(分):9.00(8.00,9.00)比9.00(9.00,10.00),COSSH-ACLFs评分(分):4.87(4.63,5.48)比5.47(5.07,5.80),NLR:2.86(2.21,5.19)比4.38(2.54,8.46),均n P<0.05〕。Logistic回归分析显示,CLIF-C OFs评分〔优势比(n OR)=0.532,95%可信区间(95%n CI)为0.380~0.744,n P<0.05〕、NLR(n OR=0.901,95%n CI为0.835~0.972,n P0.05),入院基线资料中仅LYM间比较差异具有统计学意义〔×10n 9/L:1.35(0.74,1.73)比0.81(0.51,1.30),n P<0.05〕;存活组的CLIF-C OFs、COSSH-ACLFs评分及NLR均明显低于死亡组〔CLIF-C OFs评分(分):9.00(8.00,9.00)比9.00(8.00,10.00),COSSH-ACLFs评分(分):4.99(4.69,5.64)比5.34(5.03,5.81),NLR:2.85(2.21,5.72)比4.38(2.47,10.20),均n P<0.05〕;CLIF-C OFs评分(n OR=0.593,95%n CI为0.401~0.878,n P<0.05)、NLR(n OR=0.914,95%n CI为0.842~0.993,n P 0.05). The age [years old: 43.00 (34.00, 53.00) vs. 50.00 (42.50, 55.00)] and serum levels of ALT [U/L: 252.90 (61.43, 613.33) vs. 359.10 (115.15, 784.70)], AST [U/L: 146.15 (90.88, 449.30) vs. 237.80 (109.00, 635.05)], TBil [μmol/L: 265.10 (183.10, 347.60) vs. 307.50 (229.90, 405.55)] and INR [2.13 (1.91, 2.46) vs. 2.29 (2.02, 2.94)] in survival group were lower than those in death group and the PTA [%: 34.00 (28.00, 38.00) vs. 31.00 (24.00, 36.00)] and LYM [×10 n 9/L: 1.37 (0.72, 1.79) vs. 0.85 (0.51, 1.39)] levels were significantly higher than those in death group (both n P < 0.05). The MELD-Na [17.99 (16.60, 19.63) vs. 19.16 (17.43, 20.80)], CLIF-C OFs [9.00 (8.00, 9.00) vs. 9.00 (9.00, 10.00)], COSSH-ACLFs [4.87 (4.63, 5.48) vs. 5.47 (5.07, 5.80)] and NLR [2.86 (2.21, 5.19) vs. 4.38 (2.54, 8.46)] were lower in survival group than those of the death group (all n P < 0.05). Logistic regression analysis showed that CLIF-C OFs [odds ratio ( n OR) = 0.532, 95% confidence interval (95%n CI) was 0.380-0.744, n P < 0.05] and NLR ( n OR = 0.901, 95%n CI was 0.835-0.972, n P 0.05), and statistically significant difference in the baseline LYM [×10 n 9/L: 1.35 (0.74, 1.73) vs. 0.81 (0.51, 1.30)] were found between the survival group and the death group. The CLIF-C OFs, COSSH-ACLFs scores and NLR were lower in survival group compared with those of the death group [CLIF-C OFs: 9.00 (8.00, 9.00) vs. 9.00 (8.00, 10.00), COSSH-ACLFs: 4.99 (4.69, 5.64) vs. 5.34 (5.03, 5.81), NLR: 2.85 (2.21, 5.72) vs. 4.38 (2.47, 10.20), all n P < 0.05] and CLIF-C OFs ( n OR = 0.593, 95%n CI was 0.401-0.878, n P < 0.05) and NLR ( n OR = 0.593, 95%n CI was 0.401-0.878, n P < 0.05) were still as the independent risk factors for the prognosis of HBV-ACLF. The sensitivity of CLIF-C OFs≥9 and NLR≥3.14 to forecast the 8-week clinical outcome of HBV-ACLF patients were 76.7% and 67.1%, the specificity were 48.9% and 56.7%, and AUC were 0.662 and 0.623. CLIF-C OFs was combined with NLR to increase the specificity of forecasting the 8-week clinical outcome of HBV-ACLF patients to 77.8%.n Conclusions:CLIF-C OFs and NLR scores are independent risk factors affecting the clinical outcome of HBV-ACLF, and have better clinical value in predicting the prognosis of HBV-ACLF. Combined application of the two scores will be more beneficial to the prognosis of HBV-ACLF.