论文部分内容阅读
令ω(n)表示正整数n的不同素因子的个数,考虑ω(n)的k次均值,运用Nathanson和Turán的方法,证明了对x≥2和正整数k,有∑n≤xω(n)k=x(lnlnx)k+O(x(lnlnx)k-1),以及对每个δ>0和正整数k,使不等式ω(n)k-(lnlnn)k≥(lnlnx)k-1/2+δ成立的正整数n≤x的个数是O(x).这两个结果是对ω(n)经典均值估计的推广.