论文部分内容阅读
In this work,we intend to perform a detailed study on the crystallization process of PZT 53/47 nanostructured powders by starting out with an amorphous precursor synthesized by a sol-gel based solution.Our interests also lie in the feasibility for controlling the average grain size of the final structure in the submicron range on an ab initio basis.Purposely,Fourier transform infrared spectroscopy(FT-IR),Raman(Stokes and Anti-Stokes),X-ray diffraction(XRD) and scanning electron microscopy(SEM) are used to examine the microstructural characteristics based on previously reported differential thermal analysis/thermal gravimetric analysis(DTA/TGA) data.The results show a crystallization temperature of 800℃ to attain pure perovskite phase with excellent morphological quality,average grain size < 300 nm and with average crystallite size <15 nm.
In this work, we intend to perform a detailed study on the crystallization process of PZT 53/47 nanostructured powders by starting out with an amorphous precursor synthesized by a sol-gel based solution. Our interests also lie in the feasibility for controlling the average grain size of the final structure in the submicron range on an ab initio basis. Purposely, Fourier transform infrared spectroscopy (FT-IR), Raman (Stokes and Anti-Stokes), X-ray diffraction (XRD) and scanning electron microscopy are used to examine the microstructural characteristics based on previously reported differential thermal analysis / thermal gravimetric analysis (DTA / TGA) data. Results show a crystallization temperature of 800 ° C to attain pure perovskite phase with excellent morphological quality, average grain size <300 nm and with average crystallite size <15 nm.