论文部分内容阅读
美尔频率倒谱系数(MFCC)是说话人识别中常用的特征参数,而语音信号是非平稳信号,MFCC并不能很好的反映语音的时频特性。针对这一缺陷,为了提高说话人的识别率,结合新的时频分析工具分数傅立叶变换(FRFT)。将MFCC推广到分数形式,得到分数美尔频率倒谱系数(FMFCC),用以表征语音信号的特征;并利用可分性测度验证了特征参数的有效性;通过建立20个不同说话人的FMFCC特征库,采用隐马尔可夫模型(HMM)对说话人进行仿真识别。仿真结果表明,在合适的变换阶次下,说话人的平均识别率可达93%以上。