Synthesis and Characterization of Polythiophenes Bearing Diphenyl Groups in the Conjugated Chain

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:zhufeng19791123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
4,4\'-dibromo-2-nitro-biphenyl and 4,4\'-dibromo-2,3\'-dinitro-biphenyl have been synthesized via nitration reaction with 4,4′-dibromobiphenyl as the raw material. Three novel thiophene derivatives, 4, 4′-di(4-hexyl-thiophen-2-yl)biphenyl, 4,4′-di(4-hexyl-thiophen-2-yl)-2- nitro-biphenyl and 4,4′-di(4-hexyl-thiophen-2-yl)-2,3\'-dinitrobiphenyl were synthesized through Stille coupling reaction, followed by polymerization in the presence of FeCl3, respectively. UV-vis absorption spectra, fluorescence spectra, photoluminescence spectra and electrochemical properties of the polymers were investigated. And the band-gap (Eg), HOMO orbital energy (EHOMO), and LUMO orbital energy (ELUMO) of the polymers were calculated. Among the polymers, polymer PBTN and PBTD show lower band-gap (2.67 and 2.63 eV), lower HOMO energy level (-5.38 and -5.4 eV) and broader wavelength (432 and 438 nm) than that of polymer PBTB (2.69 eV, -5.36 eV and 424 nm) with incorporation of one nitro group or two nitro groups in the main chain, respectively.
其他文献
We evaluated the cure behavior of multi-walled carbon nanotubes (MWCNTs) based thermally conductive adhesive by comprehensively thermal analysis, which presented extremely complicated variability of conversion ratioαas a function of temperature with syner
Montmorillonite supported titanium (Ti-MMT) or antimony catalyst (Sb-MMT) has been a hot area of research on preparing polyethylene terephthalate/montmorillonite (PET/MMT) nanocomposites by in situ polymerization. So removal of Ti or Sb from Ti-MMT or Sb-
Synchronous rolling-casting freeform manufacturing for Metal (SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet. The clearance between the outlet and
SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tensile and hardness tests. The experiment