论文部分内容阅读
社交网络每天都会产生结构化、半结构和非结构化的大数据,数据的增长速度超过了对硬件需求的摩尔定律。在社交网络中还存在各种恶意评价、刷分和刷网站关注度等不良现象,对大数据的分析处理带来了巨大挑战。为了提高数据的处理效率和网站推荐的准确性,提出了一种在Hadoop云平台下基于用户的贪婪式实时近似网站推荐的RT-G算法。算法通过迭代寻优算法找到最合适的用户数量作为网站推荐评价的用户标准,应用频度近似算法完成对网站的推荐,通过实验证明了方法的效率和有效性。