Chaotic Dynamics of Monotone Twist Maps

来源 :数学学报(英文版) | 被引量 : 0次 | 上传用户:cngvr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
For a monotone twist map,under certain non-degenerate condition,we showed the exis-tence of infinitely many homoclinic and heteroclinic orbits between two periodic neighboring minimal orbits with the same rotation number,which indicates chaotic dynamics.Our results also apply to geodesics of smooth Riemannian metrics on the two-dimension torus.
其他文献
本文研究了Mackey-Glass系统的数值动力性问题.利用非标准有限差分方法和离散系统的分支理论,证明了随着时间延迟的增加,在正不动点处产生了一系列霍普夫分支.同时给出了在正平衡点处霍普夫分支存在的参数条件.最后,给出了一些检验文中结论有效性的数值例子.非标准有限差分方法便于构造,运算量小,适用于非线性系统的分支分析,推广了文献中的结果.“,”This paper deals with the numerical dynamics for Mackey-Glass system.By using the
Let(RPn,F)be a bumpy and irreversible Finsler n-dimensional real projective space with reversibility λ and flag curvature K satisfying(λ/1+λ)2<K<1 when n is odd,and K≥0 when n is even.We show that if there exist exactly2[n+1/2]prime closed geodesics on su
本文研究了含噪声的多延迟超网络的结构识别问题,利用随机微分时滞方程的LaSalle不变原理和Lyapunov稳定性理论,获得了通过牵制控制进行超网络结构辨识的理论.通过数值仿真验证了理论结果的有效性.以三层网络为例,仅控制一个节点就可以成功识别出该网络的未知拓扑结构,同时,驱动网络和响应网络达到了同步.
In this paper,we use a unified framework to study Poisson stable(including stationary,periodic,quasi-periodic,almost periodic,almost automorphic,Birkhoff recurrent,almost recurrent in the sense of Bebutov,Levitan almost periodic,pseudo-periodic,pseudo-rec
本文研究了任意分裂的正则双Hom-李color代数的结构.利用此种代数的根连通,得到了带有对称根系的分裂的正则双Hom-李color代数.L可以表示成L=U+ ∑[α]∈A/~ I[α],其中U是交换(阶化)子代数H的子空间,任意I[α]为L的理想,并且满足当[α]≠[β]时,[I[α],I[β]=0.在一定条件下,定义L的最大长度和根可积,证明L可分解为单(阶化)理想族的直和.“,”The aim of this article is to study the structure of split re
In this survey we will present the symbolic extension theory in topological dynamics,which was built over the past twenty years.
In this paper we review and systematize the index method in closed geodesic problem.As we know,the closed geodesic problem on compact Riemannian or Finsler manifold is a famous problem,and has far from been resolved.In recent years,the Maslov-type index t
The well-known Hartman-Grobman Theorem says that a C1 hyperbolic diffeomorphism F can be locally linearized by a homeomorphism Φ.For parameterized systems Fθ,known results show that the corresponding homeomorphisms Φθ exist uniquely in a functional space
In this paper we introduce two metrics:the max metricdn,qand the mean metric-dn,q.We give an equivalent characterization of rigid measure preserving systems by the two metrics.It turns out that an invariant measure μ on a topological dynamical system(X,T)
In this paper,we introduce a new notion of integrability for billiard tables,namely,inte-grability away from the boundary.One key feature of our notion is that the integrable region could be disjoint from the boundary with a positive distance.We prove tha