含两个小参数的抛物对流扩散方程的有限差分法

来源 :系统科学与数学 | 被引量 : 0次 | 上传用户:keithforever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究含有两个小参数的奇异摄动抛物对流扩散方程的有限差分法.应用极大模原理和障碍函数技巧,可得方程的准确解及其各阶导数的界的估计.基于准确解的有关性态,构造分片一致的Shishkin型网格.在Shishkin型网格上构建一个隐式迎风差分格式来进行数值求解,证得此差分策略是关于两个小参数都一致一阶收敛的.数值实验证实了理论结果的正确性.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
利用重合度延拓定理和分析技巧,讨论了一类具有p-Laplace算子的分布时滞中立型泛函微分方程的周期解问题,得到了其存在周期解的充分性结论,并且该结果是新的.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
研究一类边界条件中有谱参数的不连续的Sturm-Liouville问题.首先在Hilbert空间中定义了一个自共轭的线性算子A,使得该类Sturm-Liouville问题的特征值与算子A的特征值相一致.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
研究了多目标广义对策问题,通过Brouwer-Schauder-Tychonoff不动点定理,建立了弱Pareto-Nash均衡点的存在性结果,最后,通过一个例子,说明结果是新的、不能被已有的存在性结果
将非协调三角形Carey元应用于二维空间中的非线性抛物型积分微分方程.通过一些新的特殊方法和技巧,给出了有限元解的最优L模和能量模误差估计.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
不仅把Pachpatte的离散不等式推广成时滞不等式,而且把不等式中的常数项推广成连续的正函数.推广后的不等式不仅包含了更多项,且不要求函数的单调性.利用单调化技巧给出了不
给出了球面和射影平面上带根不可分地图的色和方程,从色和方程导出了球面和射影平面上带根一般不可分地图、二部地图的计数函数方程.利用色和理论,研究不同类地图的计数问题,