【摘 要】
:
准确检测C0浓度对环境保护和安全生产具有重要的意义,TDLAS技术是一种高效、高精度的CO气体浓度检测方案.设计了一种用于C0激光TDLAS型气体检测系统的光电检测电路.CO气体选
【机 构】
:
中国科学院长春光学精密机械与物理研究所,长春130033;中国科学院大学,北京100049;中国科学技术大学,合肥230026
论文部分内容阅读
准确检测C0浓度对环境保护和安全生产具有重要的意义,TDLAS技术是一种高效、高精度的CO气体浓度检测方案.设计了一种用于C0激光TDLAS型气体检测系统的光电检测电路.CO气体选择性吸收由激光器发出的特定波长信号,而后光信号经过光电探测电路转换为有效的电压信号,运用TLC4545模数转换芯片进行数据采集,并将其发送到主控芯片STM32F105R8进行处理,使用W25Q128闪存完成对实验数据的存储,最后数据通过串口调试助手进行显示.经过实验表明,该电路可以实时、稳定、精确地将光信号转换为电信号,且灵活性强,可应用于其它气体检测系统.
其他文献
材料表面的反射特性一般由双向反射分布函数(BRDF)表征,其理论计算模型已大体满足实际需要.随着计算机计算速度与效率的提升,结合实验数据利用智能优化算法反演BRDF理论计算
校准是保证振动传感器测量结果准确和可靠的重要手段。针对传统中频校准装置无法提供高加速度振动激励以及高加速度振动量值无法溯源的问题,开展基于激光干涉法的谐振式高加速度振动传感器校准技术研究。基于谐振原理建立谐振式高加速度振动发生装置,实现高加速度振动发生;建立外差激光干涉法绝对振动校准系统,通过对外差激光干涉信号的直接采集和解调,实现了高加速度振动测量和校准。实验结果表明,该系统能够在140~2 9
基于LIBS技术结合BP神经网络技术,对6类水稻种子进行类型鉴别研究.对水稻种子的LIBS全谱和分段光谱进行积分,再输入BP神经网络,得到:全谱积分前的识别率为81.02%,积分后识别率
为改善复杂光照条件下的多姿状鲁棒性人脸识别的效果,提出了小波变换与LBP的多姿状鲁棒性人脸识别方法。通过二维离散小波变换对人脸图像进行二级小波分解提取到低频特征信息分量,并以重构初始图像的方式实现降噪滤波处理,滤除低频光照分量后完成复杂光照补偿;继续分解复杂光照补偿后的图像,采用LBP算子对子图像的鲁棒性部分纹理特征进行描述后,提取出人脸图像各子图像的直方图特征并连接,得到人脸LBP纹理特征,通过
随着激光技术的不断发展,单频激光器以其良好的单色性、高效率、窄带宽等优点广泛运用于激光测距、激光医疗、激光光谱学等领域.实现激光器单频输出的方法有很多种,采用的是