论文部分内容阅读
In this work, the serpentine powders were sintered to make the serpentine-reinforced Al-matrix composites, and the microstructures of which were characterized by differential scanning calorimetry, thermal gravimetric analyzer, and X-ray diffractometer. Scanning electron microscopy equipped with energy dispersive spectroscopy. Results show that the sintered serpentine powders were deeply absorbed on the worn surface and embedded in the furrows and scratches of the matrix, forming a self-repairing surface layer which reduces the friction coefficient. The surface layer coated by serpentine was compact, dense, and uniform with the friction time prolonged, compensating the worn loss and increasing the matrix mass.