论文部分内容阅读
为提高RBF神经网络的建模性能,提出一种基于改进无迹Kalman滤波(UKF)的RBF神经网络训练算法。在该算法中,首先将比例最小偏度单形Sigma点采样策略引入UT,以有效改进UKF,提升其计算效率,然后利用改进的UKF优化估计RBF神经网络的最优参数。仿真结果表明,改进的UKF比EKF具有更高的RBF神经网络模型训练精度,与传统UKF的模型精度大体相当,但速度更快,计算效率更高。