论文部分内容阅读
常规的粒子群优化(particle swarm optimization,PSO)算法在求解动态环境下优化问题时,由于其收敛性而失去对最优解的跟踪能力。为了更好地增加种群的多样性,以保证算法更好地追踪动态环境下最优解的变化,文章提出一种基于邻域搜索的粒子群动态优化算法(neighborhood search particle swalm optimization,NSPSO)。在每一演化代中对个体依适应值从大到小排序,并对排序后的个体按从大到小的顺序以一定的比例分配Leader、Follower、Scou