论文部分内容阅读
分层强化学习中目前有Option、HAM和MAXQ三种主要方法,其自动分层问题均未得到有效解决,该文针对第一种方法,提出了Option自动生成算法,该算法以Agent在学习初始阶段探测到的状态空间为输入.采用人工免疫网络技术对其进行聚类,在聚类后的各状态子集上通过经验回放学习产生内部策略集,从而生成Option,仿真实验验证了该算法的有效性。