论文部分内容阅读
本文对Drucker公设的表述进行了修正,使之既可处理稳定材料又可处理非稳定材料。同时以应力空间中的加载函数为基础,直接得到了以应变增量表达应力增量的塑性本构关系,这更便于在实际问题特对是在动态数值方法中应用。
This article modifies Drucker’s public expression so that it can handle both stable materials and non-stabilized materials. At the same time, based on the loading function in the stress space, the plastic constitutive relationship, which expresses the increment of stress in increments of strain, is directly obtained. This is more convenient for the application of the dynamic numerical method to the specific problem of practical problems.