论文部分内容阅读
揭示了InfoMax盲源分离算法也是以Kullback-Leibler散度为代价函数的,它之所以能有效地用于语音盲分离,是因为所选取的非线性函数的导数能够近似为源信号的概率密度函度(PDF)。由此又提出一种广义非线性InfoMax算法,该算法在估计分主矩阵的同时也对非线性函数进行迭代估计。实验结果表明这一算法能有效地分离任何超高斯和亚高斯信号的混合信号,包括语音、图像信号或其它信号的混合。