论文部分内容阅读
针对广义预测控制算法需要在线递推求解Diophantine方程及矩阵求逆等计算量大的缺陷,对参数未知多变量非线性系统提出一种径向基函数神经网络的直接广义预测控制算法。该算法将多变量非线性系统转化为多变量时变线性系统,用三次样条基函数逼近系统广义误差向量中的时变系数,然后利用径向基神经网络来逼近控制增量表达式,并基于广义误差估计值对控制器参数向量即网络权值向量θu和广义误差估计值中的未知向量θe进行自适应调整。仿真结果验证了此算法的有效性。