论文部分内容阅读
针对传统模糊C均值聚类算法(FCM)易陷入局部极小值和对初值敏感的缺陷,提出一种基于混沌自适应引力搜索的模糊C均值聚类算法.首先采用自适应的更新粒子速度和混沌优化粒子最优位置的策略,对引力搜索算法进行改进.其次,用改进的引力搜索算法优化FCM的初始聚类中心.在Iris和Wine数据集上的实验表明,该算法具有很强的全局搜索能力,提高了聚类的效果和效率.