论文部分内容阅读
针对传统基于学习的人脸图像超分辨率算法存在高频细节信息损失过多问题,提出一种全局重建和位置块残差补偿相结合的人脸图像超分辨率新算法.首先利用高、低分辨率训练集所有样本,使用基于权值学习的全局重建算法得到初步的人脸图像,再结合图像模糊和下采样过程,产生高、低分辨率残差图像训练集,最后使用基于位置块的残差补偿算法,对初步的人脸图像进行高频细节补偿得到最终结果.对比实验结果表明,相比同类基于学习的人脸图像超分辨率算法,在将人脸图像分辨率提高4×4倍的情况下,新算法的平均峰值信噪比可提高0.65~3.55d