论文部分内容阅读
用ICA算法来实现fMRI信号的盲源分离,可以提取出产生fMRI信号的多种源信号。但是在处理过程中存在两个困难:(1)fMRI数据的规模比较大,计算耗时;(2)计算量太大难免产生误差。给结果的分析带来不便。所以我们考虑对数据进行降维,但是如何确定源信号的个数也是一个难题。我们利用信息论的方法来估计源信号的个数,再使用主成分分析对数据进行降维。通过这样的处理,有效地确定了源信号的个数,减少了计算量。然后将一种新的ICA算法(New fixed—point,NewFP)用于处理降维后的数据。最后通过对实际的f