Sulfate Attack Resistance of Air-entrained Silica Fume Concrete under Dry-Wet Cycle Condition

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:youyou306
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Based on the erosion resistant coefficient, the effects of water-cement ratio, air-entrained, silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition. A more signiifcant model of concrete resistance to sulfate attack was also established, thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete. The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack, and leads to the remarkable declines of concrete strength and sulfate resistance. Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt. However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure, and then the air bubbles are iflled with sulfate salt crystallization. The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio, 6.0% air-entrained, 5% silica fume and 30% sand ratio. The erosion resistant coefifcientsK80 andK150 of this concrete are increased by 9%, 7%, 9%, and 5% respectively as compared with those of concretes without silica fume and air entraining.
其他文献
This study aims to introduce an appropriate analytical method for asphalt pavement based upon unified strength theory (UST). The traditional maximum shear stress strength theory (MSST) cannot describe the marked difference between tension strength and com
In order to reduce shrinkage and improve the mechanical properties of dental composite resins, we designed a hybrid resin formulation containing a novel matrix resin, BisS-GMA [bisphenol-S-bis(3-methacrylato-2-hydroxypropyl)ether], and epoxy modiifed by a
Carbon nanotubes (CNTs) have potential applications in many fields, chemical vapor deposition (CVD) is an effective method for CNTs preparation. By CVD, the catalytic pyrolysis temperature, pyrolysis time and the size of the raw gas lfow have a great inlf
The potential application of a designed self-assembly peptide CH3CO-Pro-Thr-Phe-Cys-Phe-Lys-Phe-Glu-Pro-NH2 (named as P1) as a cartier of 5-Fluorouracil (5-Fu) for controlled release in vitro was studied.5-Fluorouracil (5-Fu) was selected as a representat
An attempt was made to investigate the machinability of SiCp/Al composites based on the experimental study using mill-grinding processing method. The experiments were carried out on a high-speed CNC machining center using integrated abrasive cutting tool.
In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase compos
Wear resistances of CO2 corrosion product iflms formed on P110 carbon steel at different CO2 partial pressures were investigated in water sand two-phase lfow by weight loss method, and the microstructures and compositions of corrosion product iflms were a
A plasticizer triethylene glycol maleate (TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefifcient of 0.042 in the product was conifrmed by acid value determination, HPLC and FTIR. Its plast
A water-conducting polyacrylamide/montmorillonite coating was prepared by solution-blending. The coating was coated on fiber and then composited with polymer to form a composite film material that used for water saving and tree planting in arid and desert