论文部分内容阅读
提出一种基于最小二乘支持向量机(LS-SVM)的传感器非线性校正及温度补偿的新方法,并给出了相应的过程和算法。在该方法中,LS—SVM被用作构建逆模型,并通过该模型映射传感器非线性特性,同时实现了传感器的温度补偿和非线性校正。通过实际电容式压力传感器校正的实验结果表明:所提模型建模速度比SVM模型高1-2个数量级,补偿误差仅为SVM模型的20%左右。因此,该学习速度快、补偿精度高、抗噪声干扰能力强,适合传感器温度补偿及校正。