论文部分内容阅读
近年来,深度学习在很多领域都得到了广泛的应用,然而基于深度学习的人工智能应用正面临严重的隐私泄露风险,虽然研究人员提出了很多相应的防御机制,但这些方法大都存在以下问题:对攻击者掌握的背景知识有过多的假设、不具有通用性以及高复杂度和高计算代价.尝试从差分隐私的角度出发构造一个通用隐私保护防御算法.目前在深度学习领域,应用最广泛的差分隐私算法是DPSGD(Stochastic Gradient Descent with Differential Privacy),但在应用DPSGD的过程中难以选择合适的参数以