【摘 要】
:
通过梳理淡水环境中微塑料分布现状及毒性效应研究进展,分析淡水环境中微塑料的丰度、类型、粒径、颜色、形状及毒性影响因素,并综述了微塑料对淡水环境生态系统中不同营养级生物的毒性效应。结果表明:微塑料在淡水水体中的分布受人为活动、水文特征、季节及微塑料类型等因素的影响,人类活动较多、水动力条件差及降水较多的水体中微塑料污染严重,不同密度的微塑料在环境介质中赋存存在差异;微塑料毒性与其浓度、粒径、类型密切
【机 构】
:
环境基准与风险评估国家重点实验室,中国环境科学研究院
【基金项目】
:
国家重点研发计划项目(2020YFC1909502);
论文部分内容阅读
通过梳理淡水环境中微塑料分布现状及毒性效应研究进展,分析淡水环境中微塑料的丰度、类型、粒径、颜色、形状及毒性影响因素,并综述了微塑料对淡水环境生态系统中不同营养级生物的毒性效应。结果表明:微塑料在淡水水体中的分布受人为活动、水文特征、季节及微塑料类型等因素的影响,人类活动较多、水动力条件差及降水较多的水体中微塑料污染严重,不同密度的微塑料在环境介质中赋存存在差异;微塑料毒性与其浓度、粒径、类型密切相关,通过在生物体内富集及携带的化学污染物,影响水生生物的摄食、生长及繁殖能力。我国淡水环境微塑料丰度高于其他国家,建议逐步开展淡水环境微塑料及河流微塑料入海通量的调查及监测。目前国内外微塑料毒性效应研究对象主要关注了浮游植物、大型溞、贻贝及斑马鱼,尚不能满足微塑料生态和健康风险评价要求,亟待开展我国不同营养级本土生物的微塑料毒性效应研究,为将来淡水环境微塑料环境基准的建立提供科技支撑。
其他文献
机械装备是实现智能制造的关键要素。由于机械装备工作环境复杂、且不断受到各种环境作用力影响,其容易发生部件损伤、健康劣化等问题,导致机械装备轻则发生异常,使用寿命缩减,重则出现故障,给企业带来巨大的损失。随着机械装备的信息化和智能化发展,通过对机械装备监测数据进行分析,从中快速准确地提取有用特征,可以提前感知装备异常状态,预估剩余使用寿命(Remaining useful life,RUL),实时判
作为一种半光半物质的准粒子,激子极化激元因其独特的物理性质和广泛的应用前景而倍受关注。由于光子成分的存在,激子极化激元的有效质量极小,仅为自由电子质量的10–5倍。正是因为如此小的有效质量,激子极化激元可以在较为宽松的实验条件下表现出许多在其它体系难以观察到的量子效应,如室温玻色-爱因斯坦凝聚、超流、涡旋等。此外,极小的有效质量使激子极化激元拥有非常大的德布罗意波相对较长(达到微米量级)。这一特性
研究目的:曲美他嗪(Trimetazidine,TMZ)是哌嗪类的衍生药物,它通过抑制线粒体β氧化过程中3-酮酰基辅酶A硫酯酶(3-ketoacyl Co A thiolase,3-KAT)活性,对缺血性心脏病具有良好的保护效果。以往研究报道TMZ对急性肾损伤(Acute kidney injury,AKI)也具有保护作用,然而缺乏其在糖尿病肾病(Diabetic nephropathy,DN)中
近年来,环境污染和能源危机使新能源发电越来越受到重视。在众多的新能源中,风能由于储能丰富、对环境友好、可再生等优点极具发展潜力。随着电力电子技术的发展,由有刷双馈电机和电力电子变流器构成的有刷双馈发电系统已得到广泛应用,但电刷和滑环易磨损,维护成本高。而无刷双馈电机采用了特殊的绕组结构,省去了电刷和滑环,可进一步提升可靠性。因此,以无刷双馈电机为核心构建的无刷双馈发电系统在海上、偏远地区等环境恶劣
量子隧穿是量子力学里最基本的过程之一,它在众多科学技术领域有广泛的应用,如扫描隧穿显微镜、隧道结、隧道场效应晶体管、隧穿二极管等。激光诱导的原子分子隧穿电离是强激光与原子分子相互作用的基本物理过程之一,它是阿秒科学中许多超快过程的第一步。因此,原子分子强场隧穿电离动态过程的精确探测对理解强场超快现象,以及开拓这些现象的应用至关重要。近些年,阿秒技术的发展为人们研究原子分子强场隧穿电离动态过程提供了
铝合金具有比强度、比刚度高、导电和导热性能好等优点,是一种重要的轻量化结构材料。传统方法成形高性能铝合金复杂构件时面临形状与性能协同优化难的问题。激光选区熔化(Selective Laser Melting,SLM)技术为高性能铝合金复杂构件的一体化成形提供了新途径。但是,SLM成形传统牌号高强铝合金面临裂纹、孔隙和高残余应力等问题,使传统牌号高强铝合金SLM成形存在较大的困难。为此,本文以传统牌
研究背景和目的:骨是肝细胞癌(hepatocellular carcinoma,HCC)转移的第二常见部位,骨转移会导致肝癌病人极差的预后。肝细胞癌骨转移病灶通常表现为溶骨性病变,破骨细胞的活化成熟在其中起到至关重要的作用。长链非编码RNA(long non-coding RNA,lnc RNA)H19在人类癌症的发病机制中发挥着重要作用。然而,H19在肝癌骨转移中的作用及其分子机制尚不清楚。研究
目前,全球变暖危机日益加剧,我国作为世界上最大的碳排放国之一面临着巨大的CO2减排压力。基于此,国家明确提出了在2030年碳达峰、2060年碳中和的目标,着力发展新型高效的碳减排技术、构建低碳经济。碳捕集与封存技术能够有效固定工业源尾气内的二氧化碳,被认为是实现“净”零目标的关键一环。其中,基于Li4SiO4吸附剂的高温CO2捕集技术更是近年来热门的研究方向,具有良好的工业应用背景。但目前其实际应
稀疏贝叶斯学习算法在智能电网、网络化系统辨识、信号处理等领域得到广泛应用,其引入模型稀疏性来平衡模型的拟合能力和泛化能力,并基于贝叶斯学习理论来推断模型参数。一方面,传统的稀疏贝叶斯学习算法每次迭代中需计算矩阵的逆而具有O(n~3)的计算复杂度,导致难以处理数据维度高且样本量大的问题。另一方面,由于具有非凸目标函数,传统的稀疏贝叶斯学习算法容易陷入局部最优解,导致模型质量依赖于算法的初始值。本文针
随着多媒体应用和立体显示技术的快速发展,3D视频正变得越来越流行。新一代多视点纹理加深度(MVD)的3D视频表示格式也成为了主流。为了高效地压缩MVD格式的3D视频,在最新一代高效视频编码标准HEVC基础上,制定了3D-HEVC标准。由于引入了多个不同视角所拍摄的多路视点和深度图,在3D-HEVC标准中开发了许多新的视点间预测技术和深度图编码工具。这些新的技术和工具极大提升了多视点视频的编码效率,