论文部分内容阅读
针对传统重建算法对火焰重建精度低、重建速度慢的问题,提出了基于正则先验的全变差代数迭代(ARTTV)算法,以提高对称与非对称火焰的重建精度。同时,为了提高重建速度,建立了基于"ARTTV-粒子群算法(PSO)内核"的极限学习机(ELM)神经网络,该神经网络具有与迭代算法近乎相同的重建能力,同时又具有超过迭代算法约300倍的重建速度。