论文部分内容阅读
针对低对比度图像增强问题,提出了一种将直方图修正与RBF神经网络相结合的图像对比度增强算法。首先由原始图像获得与其邻域存在对比度的像素的条件概率直方图,通过调整两个增强参数可以改变条件概率直方图和均匀分布直方图的权重,生成新的直方图对图像进行增强。采用RBF神经网络建立图像特征与两个增强参数之间的非线性映射关系。根据图像本身的特征快速获得增强参数,从而实现图像的自适应增强。该方法计算量小,实时性强,应用范围广,有较强的自适应性。