论文部分内容阅读
提出一种基于集合经验模态分解、样本熵和灰色支持向量机相结合的卫星钟差预报方法。首先利用EEMD对钟差序列进行分解,然后采用样本熵对复杂度相似的分量进行叠加组合,进而对各新分量建立高频支持向量机和低频灰色GM(1,1)进行滚动式预报,最后叠加各预报结果得到钟差预报值。用IGS提供的钟差数据作实验,与灰色模型、支持向量机、遗传小波神经网络的多步预报进行对比分析。结果表明,该方法预报精度较高,对于较长时间的钟差预报也能保证较好的预报效果。