论文部分内容阅读
我们把形如y=ax2+bx+cpx2+qx+r(a、b、c、p、q、rR,p、q不全为0)的函数称为“分式”函数.现在介绍求这种函数值域的方法.一、形如y=bx+cqx+r(q≠0)的函数值域的求法将函数解析式变形为y=bq-brq-cqx+r,当c=brq,即bq=cr(分子分母有共同的因式)时?
We call the function y=ax2+bx+cpx2+qx+r (a, b, c, p, q, rR, p, q not all 0) a “fractional” function. Now we introduce the method to find the value range of this function. First, the form of the functional domain of the form y=bx+cqx+r(q≠0) transforms the function analytical expression to y=bq-brq-cqx+r, when c=brq, ie bq=cr (the numerator and denominator have a common factorization) Time?