论文部分内容阅读
针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本特征的基础上结合用户行为特征作为特征进行提取。在VETT算法中,迭代过程被分成组内垂直集成和组间水平集成两部分:组内集成是利用分类器以往的迭代模型集成为一个原始分类器,而组间集成是利用3个原始分类器通过传统过程训练得到这一轮迭代后的二代分类器,以此来提高标签标记的准确