论文部分内容阅读
低空间分辨率和物质异质性等因素造成的图像混合像元问题,使像元级的数据处理和应用难以满足实际需求。光谱解混提取亚像元尺度上的端元和丰度信息,为现实应用的数据精细化定量分析提供技术支撑。本文介绍了近些年光谱解混理论方法和应用的相关研究进展,包括线性与非线性混合模型作用,以及几何、正则优化和统计机器学习原理框架下的方法研究成果。此外,分析了光谱解混对分类等其他技术性能的改善作用以及该技术解决从遥感到医学等室内级应用问题的理论和实际价值。最后,总结了光谱解混技术与应用研究中的不足和构建二者协同发展的必要性。