论文部分内容阅读
在赋范线性空间中给出了泛函的高阶微分中值定理,并利用Stirling数这个工具分别研究了当g(n)(x0)h(n)≠0且存在k(k>n),使得f(k)(x0)h(k)·gn(x0)h(n)≠f(n)(x0)h(n)·g(k)(x0)h(k)和g(n)(x0)h(n)=0,g(k)(x0)h(k)≠0(k>n),f(n)(x0)h(n)=0,f(m)(x0)h(m)≠0(m>n)时高阶微分"中值点"的渐近性,给出了渐近估计式.