论文部分内容阅读
独立成分分析(independent component analysis,ICA)是一种混合信号处理与分离方法,能够从多维混合观测数据中分离出各个独立成分。目前,ICA已成功应用于特征提取、信号处理、模式识别等诸多领域。然而,由于实际问题的复杂性,可观测到的混合观测中往往含有噪声、异常点与缺失点,而标准ICA算法对这类数据往往不能有效处理。针对该问题,提出了一种基于L,范数重建的新思路。基本思路是将传统ICA模型中加入L1范数项重新建模,利用L,范数误差对噪声与缺失点的本质稳健性,提高模型应用普适性;进