论文部分内容阅读
针对绝缘子表面沉积污秽容易导致闪络的问题,文中分析了全卷积神经网络(fully convolutional networks,FCN)的典型结构和训练方法,提出了基于全卷积神经网络的绝缘子紫外图像污秽度评估方法 .该方法首先采用全卷积神经网络进行绝缘子放电紫外图像光斑分割提取,然后将分割的紫外光斑图像作为卷积神经网络(convolutional neural networks,CNN)的输入,实现绝缘子污秽度的评估.仿真算例的计算结果表明,FCN-16s模型融合浅层细节特征适中,应用于绝缘子放电紫外