论文部分内容阅读
针对脑机接口研究(BCI)中对脑电波信号的分类识别问题,对脑电信号中P300脑电信号的预处理、特征提取及特征分类等方面算法进行了研究,主要侧重于对P300脑电信号分类算法的研究。提出了一种自适应的集成支持向量机(SVM)分类方法,利用免疫算法的多样性以及自我调节能力,对基于Bagging的集成SVM分类学习器进行了优化,提高了对P300脑电信号识别的准确度以及针对不同个体的自适应性。研究结果表明:将自适应集成分类算法运用在BCI Competition III Dataset II的P300脑电数据上,可