论文部分内容阅读
本文基于经验小波变换(EWT,empirical wavelet transform)和奇异值分解(SVD,singular value decomposition)技术提出了一种齿轮的故障诊断方法.首先采用EWT方法将齿轮的振动信号分解为若干个本征模态分量(IMF),并利用这些IMF分量形成向量矩阵.而后对初始向量矩阵进行奇异值分解,根据奇异值分解的三大特性,将求得的特征向量矩阵的奇异值作为齿轮振动信号的模式特征向量.最后通过建立马氏距离判别函数判断齿轮的振动情况和故障类型.通过对实际实验数据的分析,证