论文部分内容阅读
针对能量耗损的故障诊断方法,提出一种基于流形学习与支持向量机的能量耗损信号分析算法。该算法将采集的能量数据重构到高维空间中,利用扩散映射(Diffusion Maps)的方法提取高维能量信号中的低维流形特征,然后利用支持向量机(SVM)对提取的低维流形特征进行分类,并用分类的准确率作为算法有效性的衡量指标;同时,利用局部切空间排列(LTSA)方法对能量信号进行分析,以比较2种算法对能量信号特征的提取能力。结果表明,基于扩散映射的方法具有更好的低维特征提取效果,从而证明了该算法对于能量耗损信号分析的有效性,