论文部分内容阅读
针对铜闪速熔炼过程中的冰铜品位在线检测难题,在组元分析的基础上,研究了独立化学反应以及组分间的摩尔数关系,并建立了数学模型;但由于反应机理的复杂性与建模时的简化,冰铜品位预测精度难以满足实际应用的要求.同时基于工业数据,建立了神经网络冰铜品位预测模型,它能很好地描述训练样本数据之间的关系,但泛化能力不强.为克服单一模型的局限性,引入了包含自适应调整隶属度函数的模糊协调器;将数学模型和神经网络模型有机结合,提出了一种冰铜品位智能集成预测模型.工业数据验证了模型的有效性.