论文部分内容阅读
考虑带有二次约束的一般二次规划问题的求解,当约束条件为非凸二次函数时,对原问题中的某个二次约束进行凸二次松驰,或在原问题的约束条件中增加一个球约束,使得原问题的可行域包含在松驰二次规划问题的可行域内。采用椭球剖分策略剖分可行域为小 椭球,用投影次梯度算法解松驰二次规划问题的拉格朗日对偶问题,从而获得原问题的一个下界。原问题最优值的一个上界可从迭代过程中的可行点得到,并在迭代过程中得到调整。该算法或在原问题最优值的一个上下界相同时终止,得到原问题的整体最优解;或产生一无限序列,其任一聚点都是原问题的整体最优